화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.102, No.52, 10799-10804, 1998
Kinetics of graphite oxidation: Monolayer and multilayer etch pits in HOPG studied by STM
Oxidation experiments using a particular grade of highly oriented pyrolytic graphite have allowed observation of large numbers of both monolayer and multilayer etch pits on the same samples, formed under identical conditions. Scanning tunneling microscopy was used to measure pits produced after various etch times, temperatures, and O-2 pressures. From these data pit growth rates, activation energies, and reaction orders were derived. Although multilayer pits were observed to grow over 3 times faster than monolayer pits in air, both types of pits had the same activation energy. Multilayer etch pits were sometimes observed to form at screw dislocations in the graphite but were also seen in the absence of such defects. The experimentally determined reaction rates and activation energies were not consistent with a direct reaction of edge-carbon atoms with atmospheric oxygen, but instead suggest a chain reaction or preequilibrium process. A mechanism for oxidation of multilayer pits involving reaction of partially oxidized sites on adjacent graphite layers is suggested.