International Journal of Hydrogen Energy, Vol.43, No.11, 5747-5759, 2018
Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions
The effect of hydrogen on the fracture toughness properties of an API X65 pipeline steel is studied under simulated H2S in-service conditions. The fracture toughness properties are measured in LT and SL directions (perpendicular and parallel to the pipeline wall thickness, respectively), following ASTM E1820. Due to size restrictions of standard single edge notch bending (SEB) specimens at the direction parallel to the thickness of the pipeline wall, an experimental protocol (see the patent) was developed to carry out the fracture toughness tests, while complying with ASTM standard 1820. This approach is especially useful in situations where hydrogen induced cracking (HIC) and in a broader sense, stepwise cracking takes place, since these cracks initiate and grow primarily in planes parallel to the pipeline rolling plane. Such values of fracture toughness are often different from those commonly measured in planes perpendicular to the rolling plane. Hydrogen might not have the same effect on fracture toughness properties as measured in different directions, due to micro structural features which are inherent from steel manufacturing process. The steady state H2S in-service conditions are simulated by electrolytically charging the specimen, for 48 h and then testing (ex-situ) the specimen for evaluating the fracture toughness properties. The steady state H2S environment charging was obtained by measuring the hydrogen concentration in the bulk of the specimen through thermal desorption spectroscopy (TDS) at three levels of hydrogen concentration. It was observed that the KQ was moderately decreased with increasing hydrogen concentration in the bulk of the steel, while CTOD0 showed a significant reduction with increasing hydrogen concentration. (C) 2018 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.