Journal of Adhesion, Vol.93, No.12, 949-963, 2017
Influence of dual-component microcapsules on self-healing efficiency and performance of metal-epoxy composite-lap joints
Dual-component microcapsules were synthesized by solvent evaporation technique using epoxy resin and hardener as core materials and polymethyl methacrylate (PMMA) as shell wall materials. Morphology, core content, and size distribution of microcapsules were monitored by controlling the various processing parameters such as agitation speed, core-shell weight ratio, and concentration of emulsifiers. The molecular structure, morphologies, and thermal characteristics of the microcapsules were examined under Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA), respectively. Synthesized dual-component microcapsules were entrenched into the epoxy polymer to introduce the healing features in single lap shear epoxy adhesive joints. Healing efficiency as high as 89% was achieved when 10 wt% dual-component microcapsules were introduced in adhesives. Investigation of the fractured surfaces of the healing enabled adhesives reveals the presence of crack pinning and crack blunting sites represented by characteristic tails at the wake of microcapsules in cohesive zone. Such failure mechanisms responsibly influence the healing efficiency.
Keywords:Aluminium and alloys;healing efficiency;lap shear;mechanical properties of adhesives;smart polymers