화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.516, 224-231, 2018
Reverse micelles enhance the formation of clathrate hydrates of hydrogen
Hypothesis: Clathrate hydrates of hydrogen form at relatively low pressures (e.g., ca. 10 MPa) when a co former compound is added. In that case, however, the gravimetric amount of stored hydrogen drops to less than 1 wt% from ca. 5.6 wt% without a co-former. Another factor hindering the entrapment of hydrogen into a clathrate matrix appears to be of a kinetic origin, in that the mass transfer of hydrogen into clathrates is limited by the macroscopic scale of the gas water interfaces involved in their formation. Thus, the enhanced formation of binary (hydrogen + co-former) hydrates would represent a major achievement in the attempt to exploit those materials as a convenient means for storing hydrogen. Experiments: Here, we present a simple process for the enhanced formation of binary hydrates of hydrogen and several co-formers, which is based on the use of reverse micelles for reducing the size of hydrate forming gas water interfaces down to tens of nanometers. This reduction of particle size allowed us to reduce the kinetic hindrance to hydrate formation. Findings: The present process was able to (i) enhance the kinetics of the formation process; and (ii) assist clathrate formation when using water-insoluble coformers (e.g., cyclopentane, tetrahydrothiophene). (C) 2018 Elsevier Inc. All rights reserved.