화학공학소재연구정보센터
Journal of Materials Science, Vol.53, No.13, 9823-9829, 2018
Magnetic anisotropy and enhanced remanence in textured polycrystalline MnAlCuC-based flakes
Anisotropic MnAlCuC and MnAlCuC/Fe polycrystalline flakes have been produced by surfactant-assisted ball milling. The [001] textured MnAlCuC flakes were formed via continuous basal cleavage along the (110) planes of the microparticles during the surfactant-assisted high-energy ball milling. The c-axes of most the grains are parallel to the flake surface. The remanent magnetization (M (r)) of annealed MnAlCuC/Fe has an enhancement of around 62.4% compared with uncoated powders. A high coercivity up to 207.4 kA/m of as-milled MnAlCuC flakes was obtained due to the domain wall pinning effect of the defects and the associated strained areas.