화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.8, 3139-3155, 2018
Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism
We carried out a comprehensive study on the generality, scope, limitations, and mechanism of the palladium-catalyzed hydrophosphorylation of alkynes with P(O)-H compounds (i.e., H-phosphonates, H-phosphinates, secondary phosphine oxides, and hypo-phosphinic acid). For H-phosphonates, Pd/dppp was the best catalyst. Both aromatic and aliphatic alkynes, with a variety of functional groups, were applicable to produce the Markovnikov adducts in high yields with high regioselectivity. Aromatic alkynes showed higher reactivity than aliphatic alkynes. Terminal alkynes reacted faster than internal alkynes. Sterically crowded H-phosphonates disfavored the addition. For H-phosphinates and secondary phosphine oxides, Pd/dppe/Ph2P(O)OH was the catalyst of choice, which led to highly regioselective formation of the Markovnikov adducts. By using Pd(PPh3)(4) as the catalyst, hypophosphinic acid added to terminal alkynes to give the corresponding Markovnikov adducts. Phosphinic acids, phosphonic acid, and its monoester were not applicable to this palladium-catalyzed hydrophosphorylation. Mechanistic studies showed that, with a terminal alkyne, (RO)(2)P(O)H reacted, like a Bronsted acid, to selectively generate the alpha-alkenylpalladium intermediate via hydropalladation. On the other hand, Ph(RO)P(O)H and Ph2P(O) H gave a mixture of alpha- and beta-alkenylpalladium complexes. In the presence of Ph2P(O)OH, hydropalladation with this acid took place first to selectively generate the alpha-alkenylpalladium intermediate. A subsequent ligand exchange with a P(O)H compound gave the phosphorylpalladium intermediate which produced the Markovnikov adduct via reductive elimination. Related intermediates in the catalytic cycle were isolated and characterized.