Langmuir, Vol.34, No.15, 4484-4493, 2018
Directional Transport of a Liquid Drop between Parallel-Nonparallel Combinative Plates
Liquids confined between two parallel plates can perform the function of transmission, support, or lubrication in many practical applications, due to which to maintain liquids stable within their working area is very important. However, instabilities may lead to the formation of leaking drops outside the bulk liquid, thus it is necessary to transport the detached drops back without overstepping the working area and causing destructive leakage to the system. In this study, we report a novel and facile method to solve this problem by introducing the wedgelike geometry into the parallel gap to form a parallel-nonparallel combinative construction. Transport performances of this structure were investigated. The criterion for self-propelled motion was established, which seemed more difficult to meet than that in the nonparallel gap. Then, we performed a more detailed investigation into the drop dynamics under squeezing and relaxing modes because the drops can surely return in hydrophilic combinative gaps, whereas uncertainties arose in gaps with a weak hydrophobic character. Therefore, through exploration of the transition mechanism of the drop motion state, a crucial factor named turning point was discovered and supposed to be directly related to the final state of the drops. On the basis of the theoretical model of turning point, the criterion to identify whether a liquid drop returns to the parallel part under squeezing and relaxing modes was achieved. These criteria can provide guidance on parameter selection and structural optimization for the combinative gap, so that the destructive leakage in practical productions can be avoided.