화학공학소재연구정보센터
Langmuir, Vol.34, No.3, 886-895, 2018
Stable in Bulk and Aggregating at the Interface: Comparing Core-Shell Nanoparticles in Suspension and at Fluid Interfaces
Colloidal particles are extensively used to assemble materials from bulk suspensions or after adsorption and confinement at fluid interfaces (e.g., oil-water interfaces). Interestingly, and often underestimated, optimizing interactions for bulk assembly may not lead to the same behavior at fluid interfaces. In this work, we compare model composite nanoparticles with a silica core coated with a poly-N-isopropyl-acrylamide hydrogel shell in bulk aqueous suspensions and after adsorption at an oil-water interface. Bulk properties are analyzed by confocal differential dynamic microscopy, a recently developed technique that allows one to simultaneously obtain structural and dynamical information up to high volume fractions. The results demonstrate excellent colloidal stability and the absence of aggregation in all cases. The behavior at the interface, investigated by a range of complementary approaches, is instead different. The same hydrogel shells that stabilize the particles in the bulk deform at the interface and induce attractive capillary interactions that lead to aggregation even at very low area fractions (surface coverage). Upon further compression of a particle-laden interface, a structural transition is observed where closely packed particle aggregates form. These findings emphasize the manifestation of different, and possibly unexpected, responses for sterically stabilized nanoparticles in the bulk and upon interfacial confinement.