Propellants Explosives Pyrotechnics, Vol.43, No.1, 62-68, 2018
Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives
During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoride (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.