화학공학소재연구정보센터
Renewable Energy, Vol.118, 131-137, 2018
Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China
As the installation of large-scale photovoltaic (PV) facilities in the barren area of Gonghe, China, would cover a substantial portion of the Earth's surface with PV panels, concerns exist about the extent to which PV plants induce unfavorable surface radiative effects from the change in land use. In contrast to the theoretical calculations and model simulations of previous studies, parallel observations derived from in situ experiments spanning two contrasting land surfaces in Gonghe, consisting of a natural barren surface and one covered with PV panel, provide new insight into the potential impact of large-scale PV plants on the surface radiation and temperature. The novel results presented here are as follows. (1) The specific variations of the surface shortwave radiation components enable the PV panels to serve as energy sinks throughout the whole year, especially in the warm season. (2) The cooling of the land surface associated with the PV plant is related to the physical shading by the PV panels and the solar energy conversion. (3) The enhanced temperature of the surface of the PV panel heats the adjacent ambient air, which may subsequently drive a PV heat-island effect. Moreover, recommendations for an improved experimental design are presented. Our findings provide a solid basis for the parameterization of a PV plant in numerical models, with the view to delivering a more realistic quantitative and practical guidance for the development of the solar industry in the future. (C) 2017 Elsevier Ltd. All rights reserved.