Rheologica Acta, Vol.57, No.2, 127-140, 2018
A numerical study on nonlinear dynamics of three-dimensional time-depended viscoelastic Taylor-Couette flow
In this paper, three-dimensional viscoelastic Taylor-Couette instability between concentric rotating cylinders is studied numerically. The aim is to investigate and provide additional insight about the formation of time-dependent secondary flows in viscoelastic fluids between rotating cylinders. Here, the Giesekus model is used as the constitutive equation. The governing equations are solved using the finite volume method (FVM) and the PISO algorithm is employed for pressure correction. The effects of elasticity number, viscosity ratio, and mobility factor on various instability modes (especially high order ones) are investigated numerically and the origin of Taylor-Couette instability in Giesekus fluids is studied using the order of magnitude technique. The created instability is simulated for large values of fluid elasticity and high orders of nonlinearity. Also, the effect of elastic properties of fluid on the time-dependent secondary flows such as wave family and traveling wave and also on the critical conditions are studied in detail.
Keywords:Taylor-Couette instability;Viscoelastic flow;CFD simulation;Giesekus model;High-order instability modes