Korean Chemical Engineering Research, Vol.56, No.3, 303-308, June, 2018
Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성
Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives
E-mail:
초록
본 연구에서는 리튬이차전지 음극활물질인 Silicon/Carbon (Si/C) 복합소재를 제조하여 바인더 및 첨가제가 전지성능에 미치는 영향을 조사하였다. Si/C 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. Si/C 음극소재는 충·방전, 순환전압전류, 임피던스 테스트를 통해 전기화학적 성능을 분석하였다. PAA 바인더를 이용한 Si/C 전지의 용량은 1,899 mAh/g으로 다른 바인더를 사용한 합성물보다 우수하였으며, 40 사이클 동안 92%에 달하는 높은 용량 보존율을 나타내었다. 또한, VC 첨가제를 사용한 전지의 경우 3,049 mAh/g의 높은 초기용량을 나타내며, 실리콘 표면에 보호막을 형성해 초기 비가역용량을 감소시켜줌을 알 수 있었다.
Silicon/Carbon (Si/C) composite as anode materials for lithium-ion batteries was synthesized to find the effect of binders and an electrolyte additive. Si/C composites were prepared by two step method, including magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical performances of Si/C composites were investigated by charge/discharge, cyclic voltammetry and impedance tests. The anode electrode of Si/C composite with PAA binder appeared better capacity (1,899 mAh/g) and the capacity retention ratio (92%) than that of other composition coin cells during 40 cycles. Then, Vinylene carbonate (VC) was tested as an electrolyte additive. The influence of this additive on the behavior of Si/C anodes was very positive (3,049 mAh/g), since the VC additive is formed passivation films on Si/C surfaces and suppresses irreversible changes.
- Zhang WJ, J. Power Sources, 196(1), 13 (2011)
- Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144 (2014)
- Rahmat N, Abdullah AZ, Mohamed AR, Am. J. Appl. Sci., 7, 1579 (2010)
- Wu L, Zhou H, Yang J, Zhou X, Ren Y, Nie Y, Chen S, J. Alloy. Compd., 716, 204 (2017)
- Wang H, Wu P, Shi HM, Tang WZ, Tang YW, Zhou YM, She PL, Lu TH, J. Power Sources, 274, 951 (2015)
- Lee HY, Lee JD, Korean Chem. Eng. Res., 54(4), 459 (2016)
- Tian H, Tan H, Xin X, WC, Han W, Nano Energy., 11, 490 (2015)
- Wang J, Zhao H, He J, Wang C, Wang J, J. Power Sources, 196, 481 (2011)
- Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(1), 80 (2015)
- Zhang M, Hou X, Wang J, Li M, Hu S, Shao Z, Liu X, J. Alloy. Compd., 588, 206 (2014)
- Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(5), 543 (2015)
- Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem. C, 115, 13487 (2011)
- Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ, Electrochim. Acta, 136, 112 (2014)
- Chen LB, Wang K, Xie XH, Xie JY, J. Power Sources, 174(2), 538 (2007)
- Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS, J. Power Sources, 161(2), 1254 (2006)
- Han GB, Ryou MH, Cho KY, Lee YM, Park JK, J. Power Sources, 195(11), 3709 (2010)
- Yue L, Zhang WH, Yang JF, Zhang LZ, Electrochim. Acta, 125, 206 (2014)
- Wang YG, Zhang FY, Wang YQ, Ren JW, Li CL, Liu XH, Guo Y, Guo YL, Lu GZ, Mater. Chem. Phys., 115(2-3), 649 (2009)
- Madec L, Petibon R, Tasaki K, Xia J, Sun JP, Hilla IG, Dahn JR, Phys. Chem. Chem. Phys., 17, 27062 (2015)
- Wu X, Wang Z, Chen L, Huang X, Electrochem. Commun., 5, 935 (2003)
- Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U, Electrochim. Acta, 47(9), 1423 (2002)