Journal of Industrial and Engineering Chemistry, Vol.63, 12-18, July, 2018
Supercapacitive properties of composite electrode consisting of activated carbon and quinone derivatives
E-mail:
Physical mixing of activated carbon (AC) and a quinone derivative, 2,5-bis (pro-2-ny-1-ylamino) cyclohexa-2,5-diene-1,4-dione (coded HBU-281) was used to design a composite electrode for supercapacitors. The process proves to be simple and cost-effective; providing better performance compared to other reported methods. The electrode properties were probed in terms of composite composition, redox behavior, specific capacitance, and cycle life. The capacitance performance of the AC electrode was enhanced due to the extra redox reaction of hydroquinone/quinone couple of HBU- 281. The composites recorded higher specific capacitance and excellent cycle stability than the individual electrodes (AC or HBU-281). This excellent performance can be connected to the synergistic contribution of AC facilitating the electron distribution of HBU-281, and making pronounce its redox activity. These findings led to the conclusion that physical mixing of AC and HBU-281 can be adopted to design cheap and excellent composite electrodes for supercapacitor applications.
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
- Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
- Merritt RP, CVD Synthesis of Carbon Nanotubes as Active Materials for Electrochemical Capacitors, Florida Atlantic University, 2003.
- Gomibuchi E, Ichikawa T, Kimura K, Isobe S, Nabeta K, Fujii H, Carbon, 44, 983 (2006)
- Fang BZ, Binder L, Electrochim. Acta, 52(24), 6916 (2007)
- Aida T, Yamada K, Morita M, Electrochem. Solid State Lett., 12, A534 (2006)
- Xu B, Wu F, Chen S, Zhang CZ, Cao GP, Yang YS, Electrochim. Acta, 52(13), 4595 (2007)
- Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 130(9), 2730 (2008)
- Kim KM, Nam JH, Lee YG, Cho WI, Ko JM, Curr. Appl. Phys., 13(8), 1702 (2013)
- Belanger D, Ren XM, Davey J, Uribe F, Gottesfeld S, J. Electrochem. Soc., 147(8), 2923 (2000)
- Kim BC, Kwon JS, Ko JM, Park JH, Too CO, Wallace GG, Synth. Met., 160, 94 (2010)
- Suematsu S, Naoi K, J. Power Sources, 97-98, 816 (2001)
- Song Z, Zhou H, Energy Environ. Sci., 6, 2280 (2013)
- He P, Crooks RM, Faulkner LR, J. Phys. Chem., 94, 1135 (1990)
- Smith RDL, Pickup PG, Electrochim. Acta, 54(8), 2305 (2009)
- Isikli S, Diaz R, J. Power Sources, 206, 53 (2012)
- Pognon G, Brousse T, Demarconnay L, Belanger D, J. Power Sources, 196(8), 4117 (2011)
- Lee W, Suzuki S, Miyayama M, Nanomaterials, 4, 599 (2014)
- Alejandro M, Suheda I, Raul D, Electrochemistry, 81, 853 (2013)
- Pirnat K, Dominko R, Cerc-Korosec R, Mali G, Genorio B, Gaberscek M, J. Power Sources, 199, 308 (2012)
- Chen X, Wang H, Yi H, Wang X, J. Phys. Chem. C, 118, 8262 (2014)
- Chanderpratap S, Amit P, J. Phys. Chem. C, 119, 11382 (2015)
- Bolton JL, Comeau E, Vukomanovic V, Chem. Biol. Interact., 95, 279 (1995)
- Senthilkumar ST, Selvan RK, Ponpandian N, Melo JS, RSC Adv., 2, 8937 (2012)
- Field LD, Sternhell S, Kalman JR, Organic Structures from Spectra, fourth ed., John Wiley & Sons, 2012.
- Sing KSW, Everett DH, Haul HAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
- Liu X, Ding Z, He Y, Xue Z, Zhao X, Lu X, Colloids Surf. B: Biointerfaces, 79, 27 (2010)
- Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Angew. Chem.-Int. Edit., 47, 3392 (2008)
- Hepowit LR, Kim KM, Kim SH, Ryu KS, Lee YM, Ko JM, Polym. Bull., 69(7), 873 (2012)
- Cho HW, Hepowit LR, Nam HS, Kim SH, Lee YM, Kim JH, Kim KM, Ko JM, Synth. Met., 162, 410 (2012)
- Ko JM, Nam JH, Won JH, Kim KM, Synth. Met., 189, 152 (2014)
- Hashmi SA, Kumar A, Tripathi SK, Eur. Polym. J., 41, 1373 (2005)