화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.63, 95-102, July, 2018
Porous PEDOT.SiO2 hybrid conductive micro particles prepared by simultaneous co-vaporized vapor phase polymerization
E-mail:,
Porous PEDOT-SiO2 particles were successfully prepared using simultaneous co-vaporized vapor phase polymerization (SC-VPP). By controlling the TEOS content, the morphologies of the obtained particles could be tuned from appearance of hollow egg shells aggregates to the hybrid particle composed of microspheres. Despite only having up to 40% of TEOS in the SC-VPP process, SiO2 accounts for over 90% of the resulting hybrid particle, because the hydrolysis/condensation reactions of TEOS would be much faster as compared with the PEDOT polymerization. The specific capacitance of a single hybrid particle decreased with increasing SiO2 portion, owing to changes in its external/internal structures.
  1. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
  2. Irimia-Vladu M, Chem. Soc. Rev., 43, 588 (2014)
  3. Gerard M, Chaubey A, Malhotra BD, Biosens. Bioelectron., 17, 345 (2002)
  4. Guimard NK, Gomez N, Schmidt CE, Prog. Polym. Sci, 32, 876 (2007)
  5. Levermore PA, Chen L, Wang X, Das R, Bradley DDC, Adv. Mater., 19, 2385 (2007)
  6. Welsh DM, Kumar A, Meijer EW, Reynolds JR, Adv. Mater., 16, 1379 (1999)
  7. Lee KS, Yun JH, Han YH, Yim JH, Park NG, Cho KY, Park JH, J. Mater. Chem., 21, 15193 (2011)
  8. D’Arcy JM, El-Kady MF, Khine PP, Zhang L, Lee SH, Davis NR, et al., ACS Nano, 8, 1500 (2014)
  9. Ahn J, Yoon S, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
  10. Nardes AM, Kemerink M, Kok MMD, Vinken E, Maturova K, Janssen RAJ, Org. Electron., 9, 727 (2008)
  11. Somboonsub B, Invernale MA, Thongyai S, Praserthdam P, Scola DA, Sotzing GA, Polymer, 51(6), 1231 (2010)
  12. Wei Y, Yeh JM, Jin D, Jia X, Wang J, Jang GW, Chen C, Gumbs RW, Chem. Mater., 7, 969 (1995)
  13. Zeng X, Zhou T, Leng C, Zang Z, Wang M, Hu W, Tang X, Lu S, Fang L, Zhou M, J. Mater. Chem. A., 5, 1749 (2017)
  14. Pang I, Kim S, Lee J, J. Nanosci. Nanotechnol., 7, 3792 (2007)
  15. Vosgueritchian M, Lipomi DJ, Bao ZA, Adv. Funct. Mater., 22(2), 421 (2012)
  16. Wang H, Zhou H, Gestos A, Fang J, Niu H, Ding J, Lin T, Soft Matter, 9, 277 (2013)
  17. Song D, Li M, Li Y, Zhao X, Jiang B, Jiang Y, ACS Appl. Mater Interfaces, 6, 7126 (2014)
  18. Liu E, Liu C, Zhu Z, Xu J, Jiang F, Wang T, Li C, J. Comp. Mater., 1 (2017)
  19. Richards JJ, Scherbarth AD, Wagner NJ, Butler PD, ACS Appl. Mater Interfaces, 8, 24089 (2016)
  20. Hatzell KB, Boota M, Gogotsi Y, Chem. Soc. Rev., 44, 8664 (2015)
  21. Han YH, T-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
  22. Yim JH, Compos. Sci. Techol., 86, 45 (2013)
  23. Khadka R, Yim JH, Macromol. Res., 23(6), 559 (2015)
  24. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  25. Kim SW, Lee SW, Kim J, Yim JH, Cho KY, Polymer, 102, 127 (2016)
  26. Choi JS, Park JS, Kim B, Lee BT, Yim JH, Polymer, 120, 95 (2017)
  27. Adeloju SB, Wallace GG, Analyst, 121, 699 (1996)
  28. Chung BG, Lee KH, Khademhosseini A, Lee SH, Lab Chip, 12, 45 (2012)
  29. Mumtaz M, de Cuendias A, Putaux JL, Cloutet E, Cramail H, Macromol. Rapid Commun., 27(17), 1446 (2006)
  30. Choi JW, Han MG, Kim SY, Oh SG, Im SS, Synth. Met., 141, 293 (2004)
  31. Han MG, Foulger SH, ChemComm, 20, 2054 (2004)
  32. Park MK, Onishi K, Locklin J, Caruso F, Advincula RC, Langmuir, 19(20), 8550 (2003)
  33. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM, Angew. Chem., 117, 734 (2005)
  34. Teh SY, Lin T, Hung LH, Lee AP, Lab Chip, 8, 198 (2008)
  35. Lee SW, Choi JS, Cho KY, Yim JH, Euro. Polym. J., 80, 40 (2016)
  36. Gong XQ, Wen WJ, Sheng P, Langmuir, 25(12), 7072 (2009)
  37. Kim MR, Lee S, Park JK, Cho KY, ChemComm, 46, 7433 (2010)
  38. Hwangbo KH, Kim MR, Lee CS, Cho KY, Soft Matter, 7, 10874 (2011)