Applied Chemistry for Engineering, Vol.29, No.3, 264-269, June, 2018
Polysulfone에 Carbon Nanotubes, Tributyl Phosphate와 Di-(2-ethylhexyl)-phosphoric Acid를 고정화한 하이브리드 비드의 제조와 Sr(II)의 제거 특성
Preparation of Hybrid Beads Containing Polysulfone Modified with Carbon Nanotubes, Tributyl Phosphate and Di-(2-ethylhexyl)-phosphoric Acid and Removal Characteristics of Sr(II)
E-mail:
초록
Polysulfone (PSf)에 탄소 나노 튜브(CNTs, carbon nano tubes)와 두 가지 추출제, di-(2-ethylhexyl)-phosphoric acid (D2EHPA)와 tributyl phosphate (TBP)를 고정화시킨 PSf/D2EHPA/TBP/CNTs 비드를 제조하였다. 제조한 비드의 특성은 SEM, TGA 및 FTIR로 분석하였다. 제조한 PSF/D2EHPA/TBP/CNTs 비드에 의한 Sr(II)의 제거속도는 유사 2차 속도식에 의해 잘 설명되었으며, Langmuir 등온식으로 구한 Sr(II)의 최대 제거 용량은 5.52 mg/g이었다. 본 연구에서 제조한 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율은 TBP가 첨가되지 않은 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율 보다 크게 향상되는 결과를 나타내었다.
PSf/D2EHPA/TBP/CNTs beads were prepared by immobilizing carbon nanotubes (CNTs) and two extractants, di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and tributyl phosphate (TBP) on polysulfone (PSf). The prepared PSf/D2EHPA/TBP/CNTs beads were characterized by SEM, TGA, and FTIR. The removal rate of Sr(II) by PSf/D2EHPA/TBP/CNTs beads was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was found to be 5.52 mg/g. The results showed that the removal efficiency of Sr(II) by PSf/D2EHPA/CNTs beads prepared in this study was significantly improved compared to that of using PSf/D2EHPA/CNTs beads without TBP.
- Ahmadpour A, Zabihi M, Tahmasbi M, Bastami TR, J. Hazard. Mater., 182(1-3), 552 (2010)
- Wang M, Xu L, Peng J, Zhai ML, Li JQ, Wei GS, J. Hazard. Mater., 171(1-3), 820 (2009)
- Ren ZQ, Zhang WD, Meng HL, Liu YM, Dai Y, J. Chem. Eng. Data, 52(2), 438 (2007)
- Darvishi D, Haghshenas DF, Etemadi S, Alamdari EK, Sadrnezhaad SK, Hydrometallurgy, 88, 92 (2007)
- Belkhouche NE, Didi MA, Vellemin D, Solvent Extraction Ion Exch., 23, 677 (2005)
- Sahu KK, Das RP, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 28(2), 181 (1997)
- Haghshenas FD, Darvishi D, Etemadi S, Hollagh ARE, Alamdari EK, Salardini AA, Hydrometallurgy, 98, 143 (2009)
- Vahidi E, Rashchi F, Moradkhani D, Miner. Eng., 22(2), 204 (2009)
- Ochoa NA, Illanes C, Marchese J, Basualto C, Valenzuela F, Sep. Purif. Technol., 52(1), 39 (2006)
- Ciopec M, Davidescu CM, Negrea A, Lupa L, Negrea P, Popa A, Chem. Bull., 56, 43 (2011)
- Kam SK, Jeon JW, Lee MG, J. Environ. Sci. Int., 23(11), 1843 (2014)
- Kam SK, Jeon JW, Lee MG, J. Environ. Sci. Int., 24(3), 267 (2015)
- Lee CH, Lee MG, J. Environ. Sci. Int., 25(11), 1485 (2016)
- Tae G, Kornfield JA, Hubbell JA, Biomaterials, 26, 5259 (2005)
- Kebiche-Senhadji O, Mansouri L, Tingry S, Seta P, Benamor M, J. Membr. Sci., 310(1-2), 438 (2008)
- Yadav KK, Singh DK, Anitha M, Varshney L, Singh H, Sep. Purif. Technol., 118, 350 (2013)
- Ozcan S, Tor A, Aydin ME, Desalination, 259(1-3), 179 (2010)
- Ma YX, Li YF, Yang LQ, Zhao GH, Polym. Compos., 34(2), 204 (2013)
- Li YH, Di ZC, Luan ZK, Ding J, Zuo H, Wu XQ, Xu CL, Wu DH, J. Environ. Sci., 16(2), 208 (2004)
- Vellaichamy S, Palanivelu K, J. Hazard. Mater., 185(2-3), 1131 (2011)
- Lee MG, Yun JW, Suh JH, Korean Chem. Eng. Res., 55(6), 854 (2017)
- Wu FC, Tseng RL, Juang RS, Water Res., 35(3), 613 (2001)
- El-Kamash AM, Zaki AA, Geleel MAE, J. Hazard. Mater., B127, 211 (2005)