화학공학소재연구정보센터
Clean Technology, Vol.24, No.2, 87-98, June, 2018
열화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술 동향
Trends of Thermochemical Technology for the Recovery of Phosphorus from Sewage Sludge Ash
E-mail:
초록
인은 모든 생명체 유지에 필수적이며 대체 불가능한 원소로서 비료로 많이 이용되고 있다. 그러나 인 자원은 100년 이내에 고갈될 것으로 예상되고 있다. 슬러지 소각재는 인 함량이 높아 인 회수를 위한 대체 자원으로 알려져 있다. 그러나 소각재는 중금속과 인의 낮은 생물이용 가능성으로 인해 비료로 직접 사용할 수 없다. 염소 공여체를 이용한 열화학적 처리는 소각재의 중금속 함량을 낮추고 인의 생물이용 가능성을 높인다고 알려져 있다. 본 총설은 소각재의 중금속 감소와 생물이용 가능성 향상을 위한 열화학적 처리에 의 한 최신 인 회수 기술과 향후 인 회수를 위한 연구 전략을 세우기 위한 것이다. 그 결과 CaCl2와 MgCl2가 가장 효과적인 염소 공여체이며 반응온도(<1000 ℃) 가 중금속 감소에 가장 중요한 운전 요소였다. 중금속제거율은 원소에 따라 다르다. 열화학적인 슬러지 처리기술은 소각재에서 인 회수를 위한 상업적 응용이 곧 가능해지리라 사료되며 인 고갈에 의한 인류의 지속가능성 위기 극복에 큰 기여를 할 것이다. 향후 비용절감과 에너지 소비를 줄이는 환경친화적 공정 개발이 필요하다.
Phosphorus (P) is an essential and irreplaceable element for all living organisms, and it is widely used as a fertilizer. Unfortunately, it is estimated that phosphate reservoir is depleted within about 100 years. Sewage sludge ash (SSA) is an alternative resource for P recovery because of its high P content. However, SSA cannot be directly used as a fertilizer due to heavy metals in it and low P bioavailability. Thermochemical treatment with Cl donor is known to reduce heavy metal contents and increase P bioavailability of SSA. Literature review on thermochemical technologies of SSA for the reduction of heavy metals and bioavailability enhancement has been carried out to estimate the status of current P recovery technology and to develop strategic future research plan for P recovery. The review showed that CaCl2 and MgCl2 were the most effective Cl donors and reaction temperature (<1000 ℃) was the critical operation condition for the reduction. The removal efficiency depends on the species of heavy metals. Thermochemical technology of SSA for P recovery showed the possibility of commercial application in the near future to overcome the coming crisis of human sustainability by P depletion, but it needs cost effectiveness and more ecofriendly process to reduce energy consumption.
  1. Li RD, Zhao WW, Li YL, Wang WY, Zhu X, J. Hazard. Mater., 283, 423 (2015)
  2. Vogel C, Adam C, Environ. Sci. Technol., 45, 7445 (2011)
  3. Vogel C, Adam C, McNaughorn D, Appl. Spectrosc., 67, 1101 (2013)
  4. Vogel C, Adam C, Sekine R, Schiller T, Lipiec E, Appl. Spectrosc., 67, 1165 (2013)
  5. US Geological Survey Mineral Commodity Summaries: Global Phosphate Production in 2010 (2012).
  6. Donatello S, Cheeseman CR, Waste Manage., 33, 2328 (2013)
  7. Copper J, Lombardi R, Boardman D, Marquet CC, Resour. Conserv. Recycl., 57, 78 (2011)
  8. Ridder MD, Jong SD, Polchar J, Ligemann S, De Swart B.V., Netherlands. 22-26 (2012).
  9. Sewage Information System of Korea, Occurrence and disposal status of sewage sludge. https://www.hasudoinfo.or.kr/stat/statView.do?year=2014&page=07 (June 23, 2016).
  10. Liu Z, Qian G, Sun Y, Xu R, Zhou J, Xu Y, Energy Fuels, 24, 2470 (2010)
  11. Nowak B, Rocha SF, Aschenbrenner P, Rechberger H, Winter F, Chem. Eng. J., 179, 178 (2012)
  12. Nowak B, Wegerer H, Aschenbrenner P, Rechberger H, Winter F, Environ. Technol., 1, 1 (2012)
  13. Pavlik Z, Fort J, Zaleska M, Pavlikova M, Trnik A, Medved I, Keppert M, Koutsoukos PG, Cerny R, J. Clean Prod., 112, 409 (2016)
  14. Ministry of Environment of Korea, Development of Construction Materials and Concrete from Wastewater Sludge, 082-061-047, 8-12 (2007).
  15. Petzet S, Peplinski S, Bodkhe Y, Cornel P, Wat. Sci. Technol., 64, 693 (2011)
  16. Battsooj MB, Lee M, Kim DJ, J. Korean Soc. Wat. Wastewater, 30, 571 (2016)
  17. Yusuf RO, Noon ZZ, Moh’d din MF, Abba AA, Othman N, Hassan H, International Conference Environment. Universiti Sains, Pahang, Malaysia (2010).
  18. Liu J, Huang L, Sci. Rep., 5(17270), 1 (2015)
  19. Herzel H, Kruger O, Hermann L, Adam C, Sci. Total Environ., 542, 1136 (2016)
  20. Mattenberger H, Fraissler G, Brunner T, Herk P, Hermann L, Obernberger I, Waste Manage., 28, 2709 (2008)
  21. Stenmann J, Peplinski B, Adam C, Waste Manage., 45, 385 (2015)
  22. Adam C, Peplinski B, Michaelis M, Kley G, Simon FG, Waste Manage., 29, 1122 (2009)
  23. Peplinski B, Adam C, Michaelis M, Kley G, Z. Kristallogr. Suppl., 30, 459 (2009)
  24. Vogel C, Adam C, Unger M, J. Therm. Anal. Calorim., 103, 243 (2011)
  25. Vogel C, Exner RM, Adam C, Environ. Sci. Technol., 47, 563 (2012)
  26. Magdziarz A, Wilk M, Gajek M, Nowak-Wozny D, Kopia A, Kalemba-Rec I, Kozinski JA, Energy, 113, 85 (2016)
  27. Olila OG, Reddy KR, Harris WG, Hydrobiologia, 302, 147 (1995)
  28. Wang Q, Li Y, Ouyang Y, Water Resour. Res., 47, 1 (2011)
  29. Xu H, Zhang H, Shao L, He P, Waste Biomass Valor., 3, 355 (2012)
  30. Gao X, Chen TAC, Wang G, Xue Q, Tang C, Chen S, Estuar. Coast. Shelf Sci., 86, 369 (2010)
  31. Abanades S, Flamant G, Gagnepain B, Gauthier D, Waste Manage. Res., 20, 55 (2002)
  32. Chris CY, Kirk DW, J. Hazard. Mater., 64, 75 (1999)
  33. Han J, Xu M, Yao H, Furuuchi M, Sakano T, Kim HJ, Waste Manage., 27, 833 (2008)
  34. Yaws CL, The Yaws Handbook of Vapor Pressure: Antoine coefficients. (2015).
  35. Fraissler G, Joller M, Mattenberger H, Brunner T, Obernberger I, Chem. Eng. Prog., 48, 152 (2009)
  36. Liu J, Fu J, Ning X, Sun S, Wang Y, Xie W, Huang S, Zhong S, J. Environ. Sci., 35, 43 (2015)
  37. Nowak B, Aschenbrenner P, Winter F, Fuel Proc. Technol., 105, 195 (2013)
  38. Adam C, Kley G, Simon FG, Mater. Trans., 48, 3056 (2007)
  39. Nowak B, Perutka L, Asxhenbrenner P, Fraus P, Rechberger H, Winter F, Waste Manage., 31, 1285 (2011)
  40. Nowak B, Pessl A, Aschenbrenner P, Szentannai P, Mattenberger H, Rechberger H, Hermann L, Winter F, J. Hazard. Mater., 179(1-3), 323 (2010)
  41. Jeon S, Kim DJ, J. Ind. Eng. Chem., 58, 216 (2018)
  42. Lin KL, Chiang KY, Lin DF, J. Hazard. Mater., 128(2-3), 175 (2006)
  43. Zhang YG, Chen Y, Meng AH, Li QH, Cheng HF, J. Hazard. Mater., 153(1-2), 309 (2008)
  44. Kirk DW, Chan CCY, Marsh H, J. Hazard. Mater., B90, 39 (2002)