- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.24, No.2, 87-98, June, 2018
열화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술 동향
Trends of Thermochemical Technology for the Recovery of Phosphorus from Sewage Sludge Ash
E-mail:
초록
인은 모든 생명체 유지에 필수적이며 대체 불가능한 원소로서 비료로 많이 이용되고 있다. 그러나 인 자원은 100년 이내에 고갈될 것으로 예상되고 있다. 슬러지 소각재는 인 함량이 높아 인 회수를 위한 대체 자원으로 알려져 있다. 그러나 소각재는 중금속과 인의 낮은 생물이용 가능성으로 인해 비료로 직접 사용할 수 없다. 염소 공여체를 이용한 열화학적 처리는 소각재의 중금속 함량을 낮추고 인의 생물이용 가능성을 높인다고 알려져 있다. 본 총설은 소각재의 중금속 감소와 생물이용 가능성 향상을 위한 열화학적 처리에 의 한 최신 인 회수 기술과 향후 인 회수를 위한 연구 전략을 세우기 위한 것이다. 그 결과 CaCl2와 MgCl2가 가장 효과적인 염소 공여체이며 반응온도(<1000 ℃) 가 중금속 감소에 가장 중요한 운전 요소였다. 중금속제거율은 원소에 따라 다르다. 열화학적인 슬러지 처리기술은 소각재에서 인 회수를 위한 상업적 응용이 곧 가능해지리라 사료되며 인 고갈에 의한 인류의 지속가능성 위기 극복에 큰 기여를 할 것이다. 향후 비용절감과 에너지 소비를 줄이는 환경친화적 공정 개발이 필요하다.
Phosphorus (P) is an essential and irreplaceable element for all living organisms, and it is widely used as a fertilizer. Unfortunately, it is estimated that phosphate reservoir is depleted within about 100 years. Sewage sludge ash (SSA) is an alternative resource for P recovery because of its high P content. However, SSA cannot be directly used as a fertilizer due to heavy metals in it and low P bioavailability. Thermochemical treatment with Cl donor is known to reduce heavy metal contents and increase P bioavailability of SSA. Literature review on thermochemical technologies of SSA for the reduction of heavy metals and bioavailability enhancement has been carried out to estimate the status of current P recovery technology and to develop strategic future research plan for P recovery. The review showed that CaCl2 and MgCl2 were the most effective Cl donors and reaction temperature (<1000 ℃) was the critical operation condition for the reduction. The removal efficiency depends on the species of heavy metals. Thermochemical technology of SSA for P recovery showed the possibility of commercial application in the near future to overcome the coming crisis of human sustainability by P depletion, but it needs cost effectiveness and more ecofriendly process to reduce energy consumption.
Keywords:Bioavailability;Heavy metals;Phosphorus recovery;Sewage sludge ash;Thermochemical treatment
- Li RD, Zhao WW, Li YL, Wang WY, Zhu X, J. Hazard. Mater., 283, 423 (2015)
- Vogel C, Adam C, Environ. Sci. Technol., 45, 7445 (2011)
- Vogel C, Adam C, McNaughorn D, Appl. Spectrosc., 67, 1101 (2013)
- Vogel C, Adam C, Sekine R, Schiller T, Lipiec E, Appl. Spectrosc., 67, 1165 (2013)
- US Geological Survey Mineral Commodity Summaries: Global Phosphate Production in 2010 (2012).
- Donatello S, Cheeseman CR, Waste Manage., 33, 2328 (2013)
- Copper J, Lombardi R, Boardman D, Marquet CC, Resour. Conserv. Recycl., 57, 78 (2011)
- Ridder MD, Jong SD, Polchar J, Ligemann S, De Swart B.V., Netherlands. 22-26 (2012).
- Sewage Information System of Korea, Occurrence and disposal status of sewage sludge. https://www.hasudoinfo.or.kr/stat/statView.do?year=2014&page=07 (June 23, 2016).
- Liu Z, Qian G, Sun Y, Xu R, Zhou J, Xu Y, Energy Fuels, 24, 2470 (2010)
- Nowak B, Rocha SF, Aschenbrenner P, Rechberger H, Winter F, Chem. Eng. J., 179, 178 (2012)
- Nowak B, Wegerer H, Aschenbrenner P, Rechberger H, Winter F, Environ. Technol., 1, 1 (2012)
- Pavlik Z, Fort J, Zaleska M, Pavlikova M, Trnik A, Medved I, Keppert M, Koutsoukos PG, Cerny R, J. Clean Prod., 112, 409 (2016)
- Ministry of Environment of Korea, Development of Construction Materials and Concrete from Wastewater Sludge, 082-061-047, 8-12 (2007).
- Petzet S, Peplinski S, Bodkhe Y, Cornel P, Wat. Sci. Technol., 64, 693 (2011)
- Battsooj MB, Lee M, Kim DJ, J. Korean Soc. Wat. Wastewater, 30, 571 (2016)
- Yusuf RO, Noon ZZ, Moh’d din MF, Abba AA, Othman N, Hassan H, International Conference Environment. Universiti Sains, Pahang, Malaysia (2010).
- Liu J, Huang L, Sci. Rep., 5(17270), 1 (2015)
- Herzel H, Kruger O, Hermann L, Adam C, Sci. Total Environ., 542, 1136 (2016)
- Mattenberger H, Fraissler G, Brunner T, Herk P, Hermann L, Obernberger I, Waste Manage., 28, 2709 (2008)
- Stenmann J, Peplinski B, Adam C, Waste Manage., 45, 385 (2015)
- Adam C, Peplinski B, Michaelis M, Kley G, Simon FG, Waste Manage., 29, 1122 (2009)
- Peplinski B, Adam C, Michaelis M, Kley G, Z. Kristallogr. Suppl., 30, 459 (2009)
- Vogel C, Adam C, Unger M, J. Therm. Anal. Calorim., 103, 243 (2011)
- Vogel C, Exner RM, Adam C, Environ. Sci. Technol., 47, 563 (2012)
- Magdziarz A, Wilk M, Gajek M, Nowak-Wozny D, Kopia A, Kalemba-Rec I, Kozinski JA, Energy, 113, 85 (2016)
- Olila OG, Reddy KR, Harris WG, Hydrobiologia, 302, 147 (1995)
- Wang Q, Li Y, Ouyang Y, Water Resour. Res., 47, 1 (2011)
- Xu H, Zhang H, Shao L, He P, Waste Biomass Valor., 3, 355 (2012)
- Gao X, Chen TAC, Wang G, Xue Q, Tang C, Chen S, Estuar. Coast. Shelf Sci., 86, 369 (2010)
- Abanades S, Flamant G, Gagnepain B, Gauthier D, Waste Manage. Res., 20, 55 (2002)
- Chris CY, Kirk DW, J. Hazard. Mater., 64, 75 (1999)
- Han J, Xu M, Yao H, Furuuchi M, Sakano T, Kim HJ, Waste Manage., 27, 833 (2008)
- Yaws CL, The Yaws Handbook of Vapor Pressure: Antoine coefficients. (2015).
- Fraissler G, Joller M, Mattenberger H, Brunner T, Obernberger I, Chem. Eng. Prog., 48, 152 (2009)
- Liu J, Fu J, Ning X, Sun S, Wang Y, Xie W, Huang S, Zhong S, J. Environ. Sci., 35, 43 (2015)
- Nowak B, Aschenbrenner P, Winter F, Fuel Proc. Technol., 105, 195 (2013)
- Adam C, Kley G, Simon FG, Mater. Trans., 48, 3056 (2007)
- Nowak B, Perutka L, Asxhenbrenner P, Fraus P, Rechberger H, Winter F, Waste Manage., 31, 1285 (2011)
- Nowak B, Pessl A, Aschenbrenner P, Szentannai P, Mattenberger H, Rechberger H, Hermann L, Winter F, J. Hazard. Mater., 179(1-3), 323 (2010)
- Jeon S, Kim DJ, J. Ind. Eng. Chem., 58, 216 (2018)
- Lin KL, Chiang KY, Lin DF, J. Hazard. Mater., 128(2-3), 175 (2006)
- Zhang YG, Chen Y, Meng AH, Li QH, Cheng HF, J. Hazard. Mater., 153(1-2), 309 (2008)
- Kirk DW, Chan CCY, Marsh H, J. Hazard. Mater., B90, 39 (2002)