화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.4, 610-619, July, 2018
PCF-co-EF와 PLA 블렌드의 결정화 거동 및 열적 물성에 관한 연구
Study on Crystallization Kinetics and Thermal Properties of PCF-co-EF/PLA Blends
E-mail:
초록
본 연구는 poly(cyclohexylenedimethylene furandicarboxylate-co-ethylene furandicarboxylate)(PCF-co-EF)와 poly(lactic acid)(PLA)를 블렌드하여 furan 기반의 바이오 복합재 개발을 목표로 하였다. PLA는 순수 PLA(4032D) 와 첨가제가 마스터 배치된 PLA(3801X)를 사용하였다. FE-SEM을 통해 서브 마이크론의 구형 도메인 입자들이 복합재 내에 분산되어 있는 것을 통해 상용성을 확인하였고, 열적 물성 분석 및 비등온 결정화 거동 분석을 통해 PLA가 복합재의 결정화 속도를 가속시킨다는 것을 확인하였다. 또한 DMA를 이용한 동적 물성 측정을 통해 복합재의 상용성 및 연성의 향상을 확인하였다.
The goal of this study is to develop furan based bio-composites by blending poly(cyclohexylenedimethylene furandicarboxylate-co-ethylene furandicarboxylate) (PCF-co-EF) with poly(lactic acid) (PLA). Two types of PLA are used in this study and one is neat PLA mostly consisting of L-lactide (4032D) and the other is master batched PLA with various additives (3801X). The FE-SEM results showed sub-micron dispersion of the spherical domains in the blends, which indicates compatibility between PCF-co-EF and PLA. The thermal properties and non-isothermal crystallization kinetics shows that the PLA accelerates the rate of crystallization. Dynamic mechanical analysis showed compatibility of the blends and the improvement of ductility of the composites.
  1. Wu LB, Mincheva R, Xu YT, Raquez JM, Dubois P, Biomacromolecules, 13(9), 2973 (2012)
  2. Werpy T, Peterson G, Top Value Added Chemicals from Biomass, U.S. Department of Energy, Washington DC, 2004.
  3. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ, Macromolecules, 47(4), 1383 (2014)
  4. Vannini M, Marchese P, Celli A, Lorenzettib C, Green Chem., 17, 4162 (2015)
  5. Ma J, Pang Y, Wang M, Xu J, Ma H, Nie X, J. Mater. Chem., 22, 3457 (2012)
  6. Zhu JH, Cai JL, Xie WC, Chen PH, Gazzano M, Scandola M, Gross RA, Macromolecules, 46(3), 796 (2013)
  7. Wu BS, Xu YT, Bu ZY, Wu LB, Li BG, Dubois P, Polymer, 55(16), 3648 (2014)
  8. Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Chrissafis K, Exarhopoulos S, Bikiaris DN, Eur. Polym. J., 67, 383 (2015)
  9. Raquez JM, Habibi Y, Murariu M, Dubois P, Prog. Polym. Sci, 38, 1504 (2013)
  10. Shen L, Haufe J, Patel MK, Technology and Society, Universiteit Utrecht, The Netherlands, 2009.
  11. Liu HZ, Zhang JW, J. Polym. Sci. B: Polym. Phys., 49(15), 1051 (2011)
  12. Taib RM, Ghaleb ZA, Ishak ZAM, J. Appl. Polym. Sci., 123(5), 2715 (2012)
  13. Taib RM, Hassan HM, Ishak ZAM, Polym. Plast. Technol., 53, 199 (2014)
  14. Hoffman JD, Weeks JJ, J. Res. Natl. Bur. Stand. Sect A, 66, 13 (1962)
  15. Jeziorny A, Polymer, 19, 1142 (1978)
  16. Aravind I, Boumod A, Grohens Y, Thomas S, Ind. Eng. Chem. Res., 49(8), 3873 (2010)
  17. Xiao HW, Lu W, Yeh JT, J. Appl. Polym. Sci., 112(6), 3754 (2009)
  18. Elenga R, Seguela R, Rietsch F, Polymer, 32, 1975 (1991)
  19. Karrad S, Cuesta JML, Crespy A, J. Matl. Sci., 33, 453 (1998)
  20. Garcia-Martinez JM, Laguna O, Areso S, Collar EP, J. Appl. Polym. Sci., 81(3), 625 (2001)
  21. Menczel JD, Judovits L, Prime RB, Bair HE, Reading M, Swier S, Editors, John Wiley & Sons Inc., Chapter 2 (2009).
  22. Liu MY, Zhao QX, Wang Y, Zhang CG, Mo ZS, Cao SK, Polymer, 44(8), 2537 (2003)
  23. Righetti MC, Pizzoli M, Macromol. Chem. Phys., 199, 2063 (1998)
  24. Avrami M, J. Chem. Phys., 8, 212 (1939)
  25. Avrami M, J. Chem. Phys., 9, 177 (1941)
  26. Ozawa T, Polymer, 12, 150 (1971)
  27. Kolstad JJ, J. Appl. Polym. Sci., 62(7), 1079 (1996)
  28. Wan T, Chen L, Chua YC, Lu XH, J. Appl. Polym. Sci., 94(4), 1381 (2004)
  29. Zou H, Wang L, Yi C, Gan H, Polym. Int., 60, 1349 (2011)
  30. Chartoff RP, Menczel JD, Dillman SH, Editors, John Wiley & Sons Inc., Chapter 5 (2009).
  31. Kim HR, Nam BU, Kim YH, WIT Transact. Eng. Sci., 88, 648 (2014)