Polymer(Korea), Vol.42, No.4, 610-619, July, 2018
PCF-co-EF와 PLA 블렌드의 결정화 거동 및 열적 물성에 관한 연구
Study on Crystallization Kinetics and Thermal Properties of PCF-co-EF/PLA Blends
E-mail:
초록
본 연구는 poly(cyclohexylenedimethylene furandicarboxylate-co-ethylene furandicarboxylate)(PCF-co-EF)와 poly(lactic acid)(PLA)를 블렌드하여 furan 기반의 바이오 복합재 개발을 목표로 하였다. PLA는 순수 PLA(4032D) 와 첨가제가 마스터 배치된 PLA(3801X)를 사용하였다. FE-SEM을 통해 서브 마이크론의 구형 도메인 입자들이 복합재 내에 분산되어 있는 것을 통해 상용성을 확인하였고, 열적 물성 분석 및 비등온 결정화 거동 분석을 통해 PLA가 복합재의 결정화 속도를 가속시킨다는 것을 확인하였다. 또한 DMA를 이용한 동적 물성 측정을 통해 복합재의 상용성 및 연성의 향상을 확인하였다.
The goal of this study is to develop furan based bio-composites by blending poly(cyclohexylenedimethylene furandicarboxylate-co-ethylene furandicarboxylate) (PCF-co-EF) with poly(lactic acid) (PLA). Two types of PLA are used in this study and one is neat PLA mostly consisting of L-lactide (4032D) and the other is master batched PLA with various additives (3801X). The FE-SEM results showed sub-micron dispersion of the spherical domains in the blends, which indicates compatibility between PCF-co-EF and PLA. The thermal properties and non-isothermal crystallization kinetics shows that the PLA accelerates the rate of crystallization. Dynamic mechanical analysis showed compatibility of the blends and the improvement of ductility of the composites.
Keywords:poly(cyclohexylenedimethylene furandicarboxylate-co-ethylene furandicarboxylate);poly(lactic acid);polymer blend;crystallization kinetics;thermal properties
- Wu LB, Mincheva R, Xu YT, Raquez JM, Dubois P, Biomacromolecules, 13(9), 2973 (2012)
- Werpy T, Peterson G, Top Value Added Chemicals from Biomass, U.S. Department of Energy, Washington DC, 2004.
- Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ, Macromolecules, 47(4), 1383 (2014)
- Vannini M, Marchese P, Celli A, Lorenzettib C, Green Chem., 17, 4162 (2015)
- Ma J, Pang Y, Wang M, Xu J, Ma H, Nie X, J. Mater. Chem., 22, 3457 (2012)
- Zhu JH, Cai JL, Xie WC, Chen PH, Gazzano M, Scandola M, Gross RA, Macromolecules, 46(3), 796 (2013)
- Wu BS, Xu YT, Bu ZY, Wu LB, Li BG, Dubois P, Polymer, 55(16), 3648 (2014)
- Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Chrissafis K, Exarhopoulos S, Bikiaris DN, Eur. Polym. J., 67, 383 (2015)
- Raquez JM, Habibi Y, Murariu M, Dubois P, Prog. Polym. Sci, 38, 1504 (2013)
- Shen L, Haufe J, Patel MK, Technology and Society, Universiteit Utrecht, The Netherlands, 2009.
- Liu HZ, Zhang JW, J. Polym. Sci. B: Polym. Phys., 49(15), 1051 (2011)
- Taib RM, Ghaleb ZA, Ishak ZAM, J. Appl. Polym. Sci., 123(5), 2715 (2012)
- Taib RM, Hassan HM, Ishak ZAM, Polym. Plast. Technol., 53, 199 (2014)
- Hoffman JD, Weeks JJ, J. Res. Natl. Bur. Stand. Sect A, 66, 13 (1962)
- Jeziorny A, Polymer, 19, 1142 (1978)
- Aravind I, Boumod A, Grohens Y, Thomas S, Ind. Eng. Chem. Res., 49(8), 3873 (2010)
- Xiao HW, Lu W, Yeh JT, J. Appl. Polym. Sci., 112(6), 3754 (2009)
- Elenga R, Seguela R, Rietsch F, Polymer, 32, 1975 (1991)
- Karrad S, Cuesta JML, Crespy A, J. Matl. Sci., 33, 453 (1998)
- Garcia-Martinez JM, Laguna O, Areso S, Collar EP, J. Appl. Polym. Sci., 81(3), 625 (2001)
- Menczel JD, Judovits L, Prime RB, Bair HE, Reading M, Swier S, Editors, John Wiley & Sons Inc., Chapter 2 (2009).
- Liu MY, Zhao QX, Wang Y, Zhang CG, Mo ZS, Cao SK, Polymer, 44(8), 2537 (2003)
- Righetti MC, Pizzoli M, Macromol. Chem. Phys., 199, 2063 (1998)
- Avrami M, J. Chem. Phys., 8, 212 (1939)
- Avrami M, J. Chem. Phys., 9, 177 (1941)
- Ozawa T, Polymer, 12, 150 (1971)
- Kolstad JJ, J. Appl. Polym. Sci., 62(7), 1079 (1996)
- Wan T, Chen L, Chua YC, Lu XH, J. Appl. Polym. Sci., 94(4), 1381 (2004)
- Zou H, Wang L, Yi C, Gan H, Polym. Int., 60, 1349 (2011)
- Chartoff RP, Menczel JD, Dillman SH, Editors, John Wiley & Sons Inc., Chapter 5 (2009).
- Kim HR, Nam BU, Kim YH, WIT Transact. Eng. Sci., 88, 648 (2014)