화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.4, 649-653, July, 2018
PLA/셀룰로오스 나노크리스탈 나노복합재의 물성
Physical Properties of Poly(lactic acid)/Cellulose Nanocrystal Nanocomposites
E-mail:
초록
PLA는 친환경 생분해성 플라스틱으로 식품용 포장재 및 3D 프린트용 필라멘트로 주로 사용되고 있다. 본 연구에서는 친환경 천연 충전재인 셀룰로오스 나노크리스탈(CNC)을 PLA에 충전한 복합재의 물성을 조사하였다. PLA/CNC 나노복합재는 용융혼합 및 압축성형에 의해 제조하였다. CNC의 함량에 따른 PLA/CNC 나노복합재들의 인장특성, 충격강도 및 열적 특성을 각각 측정하였다. CNC의 함량이 늘어날수록 나노복합재의 결정화도, 인장 강도 및 인장 탄성률은 증가하였지만 유리전이온도, 냉각결정화 시작 온도 및 파단 신율은 감소하였다. 충격강도는 CNC1 phr일 때 가장 높았다.
Polylactic acid (PLA) is an eco-friendly biodegradable plastic and mainly used as food packaging materials and 3D printing filaments. In this study, the physical properties of PLA composites filled with cellulose nanocrystal (CNC), an environmentally friendly natural filler, were investigated. The PLA/CNC nanocomposites were prepared by melt mixing and compression molding. The tensile properties, impact strengths and thermal properties of the PLA/ CNC nanocomposites with different CNC content were measured. As the content of CNC increased, the crystallinity, tensile strength and tensile modulus of the nanocomposites increased, but the glass transition temperature, cold crystallization beginning temperature and elongation at break decreased. Impact strength was the highest at the CNC content of 1 phr.
  1. Muiruri JK, Liu S, Liu WS, Teo WS, Kong J, He C, Sustain. Chem. Eng., 5, 3929 (2017)
  2. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A, Biomacromolecules, 12(3), 523 (2011)
  3. Liu HZ, Zhang JW, J. Polym. Sci. B: Polym. Phys., 49(15), 1051 (2011)
  4. Hong J, Kim DS, Polym. Compos., 34, 293 (2013)
  5. Datta R, Henry M, J. Chem. Technol. Biotechnol., 81(7), 1119 (2006)
  6. Martin JA, Fabra MJ, Rubio AL, Lagaron JM, Cellulose, 22, 1201 (2015)
  7. Mukherjee T, Kao N, J. Polym. Environ., 19, 714 (2011)
  8. Lin N, Huang J, Chang PR, Feng J, Yu J, Carbohydr. Polym., 83, 1834 (2011)
  9. Jonoobi M, Harun J, Mathew AP, Oksman K, Compos. Sci. Technol., 70, 1742 (2010)
  10. Oksman K, Aitomaki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S, Composites Part A, 83, 2 (2016)
  11. Zeng JB, Li KA, Du AK, Roy. Soc. Ch., 5, 32546 (2015)
  12. Cheung H, Lau K, Pow Y, Zhao Y, Hui D, Composites Part B, 41, 223 (2010)
  13. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM, Polym. Degrad. Stabil., 97, 2027 (2012)
  14. Takayama T, Todo M, Tsuji H, J. Mech. Behav. Biomed. Mater., 4, 255 (2011)
  15. Feng F, Ye L, J. Appl. Polym. Sci., 119(5), 2778 (2011)
  16. Garcia AM, Hooshmand S, Skrifvars M, Kenny JM, Oksman K, Peponi L, Roy. Soc. Ch., 6, 9221 (2016)
  17. Oliveira M, Mota C, Abreu AS, Nobrega JM, J. Polym. Eng., 35, 1 (2014)
  18. Hubbe MA, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas OJ, Bioresources, 12, 2143 (2017)
  19. Park Y, Doherty WOS, Halley PJ, Ind. Crop. Prod., 27, 163 (2008)
  20. Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW, ACS Appl. Mater. Inter., 6, 6127 (2014)
  21. Nelson K, Retsina T, TAPPI J., 13, 19 (2014)
  22. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP, ACS Appl. Mater. Inter., 5, 2999 (2013)
  23. Xu XZ, Wang HR, Jiang L, Wang XN, Payne SA, Zhu JY, Li RP, Macromolecules, 47(10), 3409 (2014)
  24. Gupta A, Simmons W, Schueneman GT, Mintz EA, J. Therm. Anal. Calorim., 126, 1243 (2016)
  25. Song P, Chen G, Wei Z, Zhang W, Liang J, J. Therm. Anal. Calorim., 111, 1507 (2013)
  26. Shieh YT, Liu GL, J. Polym. Sci. B: Polym. Phys., 45(4), 466 (2007)
  27. Parida C, Dash SK, Chaterjee P, Soft Nanosci. Lett., 5, 65 (2015)
  28. Sung SH, Chang Y, Han J, Carbohydr. Polym., 169, 495 (2017)
  29. Iwatake A, Nogi M, Yano H, Compos. Sci. Technol., 68, 2103 (2008)