화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.64, 230-236, August, 2018
Chemical durability and photocatalyst activity of acid-treated ceramic TiO2 nanocomposites
E-mail:
Ceramic TiO2 nanocomposites were manufactured using the mechanical grinding and annealing procedure with the powder mixtures of fly ash, waste glass powder and nano-TiO2. The chemical durability of the heat-treated specimens was examined at 850 °C with nano-TiO2 contents to evaluate the morphological properties with/without the acid treatment, and the photocatalytic activity for bisphenol A, acetaldehyde, 2,4-dichlorophenoxyacetic acid, methylene blue, and methyl orange was investigated. The compressive strength, bending strength, and Vickers hardness of the specimens were also analyzed. Ceramics nanocomposite with 15.0 wt% TiO2 was found to be the optimum photocatalyst mechanism in all cases with/without the acid treatment.
  1. Salameh C, Nogier JP, Launay F, Boutros M, Catal. Today, 257, 35 (2015)
  2. Yang L, Wang FZ, Hakki A, Macphee DE, Liu P, Hu SG, Appl. Surf. Sci., 392, 687 (2017)
  3. Ochiai T, Fujishima A, J. Photochem. Photobiol. C Photochem. Rev., 13, 247 (2012)
  4. Romanos GE, Athanasekou CP, Katsaros FK, Kanellopoulos NK, Dionysiou DD, Likodimos V, Falaras P, J. Hazard. Mater., 211-212, 304 (2012)
  5. Luevano-Hipolite E, Martinez-de la Cruz A, Ind. Eng. Chem. Res., 55(44), 11512 (2016)
  6. Zhang S, Lei T, Li D, Zhang G, Xie C, Sens. Actuators B-Chem., 202, 964 (2014)
  7. Luo L, Miao L, Tanemura S, Tanemura M, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 148, 183 (2008)
  8. Bansal P, Verma A, J. Photochem. Photobiol. A-Chem., 342, 131 (2017)
  9. Zheng S, Cai Y, O’Shea KE, J. Photochem. Photobiol. A-Chem., 210, 61 (2010)
  10. Ilisz I, Dombi A, Mogyorosi K, Farkas A, Dekany I, Appl. Catal. B: Environ., 39(3), 247 (2002)
  11. Low JX, Cheng B, Yu JG, Appl. Surf. Sci., 392, 658 (2017)
  12. Hirano M, Ota K, Iwata H, Chem. Mater., 16, 3725 (2004)
  13. Kato K, Tsuzuki A, Taoda H, Torii Y, Kato T, Butsugan Y, J. Mater. Sci., 29(22), 5911 (1994)
  14. Truijen I, van Bael MK, van den Rul H, D’Haen J, Mullens J, J. Sol-Gel Sci. Technol., 14, 43 (2007)
  15. Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV, J. Mater. Chem., 17, 95 (2007)
  16. Kontos AI, Kontos AG, Tsoukleris DS, Vlachos GD, Falaras P, Thin Solid Films, 515(18), 7370 (2007)
  17. Kokubu T, Yamane M, J. Mater. Sci., 20, 4309 (1985)
  18. Masai H, Fujiwara T, Mori H, Komatsu T, Appl. Phys. Lett., 90, 081907 (2007)
  19. Machida F, Daiko Y, Mineshige A, Kobune M, Toyoda N, Yamada I, Yazawa T, J. Am. Ceram. Soc., 93(2), 461 (2010)
  20. Yoon SD, Byun HS, Yun YH, Ceram. Int., 41, 8241 (2015)
  21. Yun YH, Hwang KJ, Wee YJ, Yoon SD, J. Appl. Polym. Sci., 120(3), 1850 (2011)
  22. Yun YH, Yoon CH, Oh JS, Kim SB, Kang BA, Hwang KS, J. Mater. Sci., 37(15), 3211 (2002)
  23. Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H, Chemosphere, 52, 851 (2003)
  24. Zhang Y, Zhang N, Tang ZR, Xu YJ, Phys. Chem. Chem. Phys., 14, 9167 (2012)
  25. Lagergren S, Handlingar, 25, 1 (1989)