화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.8, 1601-1610, August, 2018
A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: Application to a molten carbonate fuel cell process
E-mail:
The performance of most controllers, including proportional-integral-derivative (PID) and proportionalintegral- proportional-derivative (PIPD) controllers, depends upon tuning of control parameters. In this study, we propose a novel tuning strategy for PID and PIPD controllers whose control parameters are tuned using the extended non-minimal state space model predictive functional control (ENMSSPFC) scheme based on the auto-regressive moving average (ARMA) model. The proposed control method is applied numerically in the operation of the MCFC process with the parameters of PID and PIPD controllers being optimized by ENMSSPFC based on the ARMA model for the MCFC process. Numerical simulations were carried out to assess the set-point tracking performance and disturbance rejection performance both for the perfect plant model, which represents the ideal case, and for the imperfect plant model, which is usual in practical applications. When there exists uncertainty in the plant model, the PIPD controller exhibits better overall control performance compared to the PID controller.
  1. Tchamna R, Lee M, Korean J. Chem. Eng., 34(4), 961 (2017)
  2. Xu M, Li SY, Cai WJ, Ind. Eng. Chem. Res., 44(8), 2848 (2005)
  3. Savran A, Appl. Soft Comput., 13(5), 2658 (2013)
  4. Zhang RD, Li P, Ren Z, Wang S, 2009 IEEE International Conference on Control and Automation, New Zealand, Christchurch, 314 (2009).
  5. Majhi S, Ph.D. Dissertation Univ. of Sussex, Brighton, UK (1999).
  6. Astrom KJ, Hagglund T, Instrument Society of America, Research Triangle Park, NC (1995).
  7. Tyreus BD, Luyben WL, Ind. Eng. Chem. Res., 31, 2625 (1992)
  8. Zhuang M, Artherton DP, IEEE Proc.-D: Control Theory Appl., 140(3), 216 (1993)
  9. Padhy PK, Majhi S, Comput. Chem. Eng., 30(5), 790 (2006)
  10. Tsai KI, Tsai CC, IEEE, Taipei, Taiwan, 535 (2011).
  11. Zhang RD, Cao ZX, Li P, Gao FR, IET Control Theory, 8(14), 1303 (2014)
  12. Wu S, Ind. Eng. Chem. Res., 53, 5505 (2015)
  13. Wu S, Chemometrics and Intelligent Laboratory Systems, 143, 16 (2015)
  14. Zou H, Li H, Chemometrics and Intelligent Laboratory Systems, 142, 1 (2015)
  15. Gonzalez AH, Perez JM, Odloak D, J. Process Control, 19(3), 473 (2009)
  16. Wang LP, Young PC, J. Process Control, 16(4), 355 (2006)
  17. Zhang RD, Cao ZX, Bo CM, Li P, Gao FR, Ind. Eng. Chem. Res., 53(8), 3283 (2014)
  18. Wang LP, J. Process Control, 14(2), 131 (2004)
  19. Zhang RD, Xue AK, Wang SQ, Ren ZY, J. Process Control, 21(8), 1183 (2011)
  20. Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG, U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center, Morgantown (1998).
  21. Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381 (2016)
  22. Zhang JM, Ind. Eng. Chem. Res., 52(13), 4874 (2013)
  23. Zhang RD, Gao FR, Ind. Eng. Chem. Res., 52(2), 817 (2013)