Korean Chemical Engineering Research, Vol.56, No.4, 585-591, August, 2018
미세액적 유동반응기 공정에서 연속제조된 나노구조 SiO 2 :Zn 원환형 입자의 특성
Characteristics of Nano-structured SiO2:Zn Hollow Powders Prepared in the Micro Drop Fluidized Reactor (MDFR) Process
E-mail:
초록
미세액적 유동반응기 공정에서 제조된 나노구조 SiO2:Zn 원환형 입자의 특성을 밴드갭 에너지와 표면 반응성의 관점에서 고찰하였다. SiO2:Zn 원환형 입자를 단일 공정에서 연속적이며 합리적인 생산 효율로 첨가제인 THAM(tris(hydroxymethyl)-aminomethane)과 도핑되는 Zn2+ 이온의 농도 변화에 따라 성공적으로 제조할 수 있었다. 그리고 Zn2+ 이온의 도핑은 Si4+ 이온의 conduction band 보다 에너지 레벨이 낮은 Zn2+ 이온의 acceptor level을 형성함으로써 SiO2:Zn 원환형 입자의 밴드갭 에너지를 줄일 수 있었다. 또한, 입자의 원환형 구조는 SiO2:Zn 입자의 밴드갭 에너지를 감소시키는데 기여하였다. 따라서 Zn2+ 이온이 도핑된 SiO2:Zn 원환형 입자는 표면에 SiO-H의 형성과 산소 결함의 생성으로 표면 반응성을 증대시킬 것으로 사료되었다.
Characteristics of nano-structured SiO2:Zn hollow powders prepared in the micro drop fluidized reactor process were investigated with respect to bandgap energy and surface activity. The SiO2:Zn hollow powders were successfully prepared continuously in the one step process with reasonable production efficiency, with varying the amount of THAM (tris(hydroxymethyl)-aminomethane) additive and concentration of Zn2+ ions. The doping of Zn2+ ions into SiO2 lattice led to the reduction of bandgap energy by forming the acceptor level of Zn2+ below the conduction band of Si4+ ions. The hollow shape also contributed to reduce the bandgap energy of SiO2:Zn powders. The doping of Zn2+ ions into SiO2 hollow powders could enhance the surface activity by forming SiO-H stretching and oxygen vacancies at the surface of SiO2:Zn powders.
- Dingemans G, van Helvoirt CAA, Pierreux D, Keuning W, Kessels WMM, J. Electrochem. Soc., 159(3), H277 (2012)
- Xu F, Tan W, Liu H, Li D, Li Y, Wang M, Water Sci. Technol., 74, 1680 (2016)
- Hu W, Wu X, Li Z, Yang J, Phys. Chem. Chem. Phys., 15, 5733 (2013)
- Cho GS, Lee DH, Kim DS, Lim HM, Kim C, Lee SH, Korean Chem. Eng. Res., 51(5), 622 (2013)
- Xia YN, Gates B, Yin YD, Lu Y, Adv. Mater., 12(10), 693 (2000)
- Park HY, Hwang K, Kim JH, Lee JY, Appl. Chem. Eng., 26(5), 549 (2015)
- Jeon SJ, Song SN, Kang SJ, Kim HT, Korean Chem. Eng. Res., 53(3), 357 (2015)
- Feifel SC, Lisdat F, J. Nanobiotechnol., 9, 59 (2011)
- He PL, Hu NF, Rusling JF, Langmuir, 20(3), 722 (2004)
- Hilliard LR, Zhao X, Tan W, Anal. Chim. Acta, 470, 51 (2002)
- Sun Y, Yan F, Yang W, Zhao S, Yang W, Sun C, Anal. Bioanal. Chem., 387, 1565 (2007)
- Nam JM, Thaxton C S, Mirkin CA, Science, 301, 1884 (2003)
- Jung HJ, Kim YB, Chang YH, Korean Chem. Eng. Res., 46(4), 722 (2008)
- Lee SH, Yang SW, Lim DH, Yoo DJ, Lee CK, Kang GM, Kang Y, Korean Chem. Eng. Res., 53(5), 597 (2015)
- Yoo DJ, Lim DH, Kang Y, Lee CG, Kang GM, Mater. Chem. Phys., 183, 398 (2016)
- Kang Y, Lee CG, Kang GM, Lim DH, Yoo DJ, Korea Patent 10-1757414; 10-1727052(2017).
- Yoo DJ, Lim DH, Kang Y, Lee CG, Kang GM, J. Chem. Eng. Jpn., 50(1), 21 (2017)
- Yang SW, Lim DH, Yoo DJ, Kang Y, Lee CG, Kang GM, Adv. Powder Technol., 29(3), 499 (2018)
- Reddy CV, Babu B, Shim J, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 223, 131 (2017)
- Othmen WBH, Sdiri N, Elhouichet H, Ferid M, Mater. Sci. Semicond. Process, 52, 46 (2016)
- Kang HW, Lim SN, Park SB, Int. J. Hydrog. Energy, 37(14), 10539 (2012)
- Dujardin R, Delorme F, Pintault B, Autret C, Monot-Laffez I, Giovannelli F, Mater. Lett., 187, 151 (2017)
- Shannon RD, Acta. Cryst. A, 32, 751 (1976)