화학공학소재연구정보센터
Energy, Vol.152, 427-444, 2018
Markov velocity predictor and radial basis function neural network based real-time energy management strategy for plug-in hybrid electric vehicles
Power management strategy of plug-in hybrid electric vehicle for real-time application is a major challenge as the driving pattern is unknown beforehand. In this work, an innovative real-time power management strategy framework is proposed, including short horizon driving pattern prediction, driving pattern recognition, parameter off-line optimisation, parameter on-line prediction modelling, and power management strategy real-time application. A group of characteristic parameters is used to recognise driving patterns and the engine and motor working points are optimised globally by distributed genetic algorithm off-line. The optimised results approximation model is built on the basis of a radial basis function-neural network. Based on a linear programming algorithm, the higher order Markov velocity predictor is designed to obtain the short-horizon driving conditions. Combining the optimisation results approximation model, the real-time power management strategy is proposed. The on-line optimisation power management strategy comparing to the rule-based is analysed and the MATLAB/Simulink/AVL Cruise co-simulation results demonstrate that the fuel economy of real-time power management strategy improved by 16.3%, 12.7%, and 9.1% in HWFET, LA92, and Japanese urban driving patterns, respectively, which is largely higher than with a traditional rule-based strategy and slightly lower than, or approximately equal to, the global optimisation strategy. (C) 2018 Elsevier Ltd. All rights reserved.