화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.35, No.4, 613-624, 1997
Synthesis and Reversible Photocleavage of Novel Polyurethanes Containing Coumarin Dimer Components
Six polyurethanes containing coumarin dimer components in the main chain have been prepared by polyaddition of diisocyanates with anti head-to-head 7-hydroxycoumarin dimer or anti head-to-tail 7-hydroxy-4-methylcoumarin dimer. 7-Acetoxycoumarin and 7-acetoxy-4-methylcoumarin were first prepared and then photodimerized under 350 nm UV light to give anti head-to-head 7-acetoxycoumarin dimer and anti head-to-tail 7-acetoxy-4-methylcoumarin dimer, respectively. After hydrolyzing under acidic conditions to 7-hydroxycoumarin dimer and anti head-to-head 7-hydroxycoumarin dimer, they were polymerized with aliphatic and aromatic diisocyanates in N,N-dimethylacetamide to give the polyurethanes. Addition of dibutyltin dilaurate (T-12) as catalyst increases the polymer yield with the viscosity remaining almost unchanged. It was also found that lithium chloride enhances both the yield and viscosity of the polyurethanes by increasing their solubility possibly through complexation. The polyurethanes are symmetrically photocleaved at cyclobutane rings under 254 nm UV light to dicoumarins. Reversible photodimerization of the photocleaved compounds have also been investigated under 300 and 350 nm UV light. The poly urethanes from aromatic diisocyanates or with 4-methyl substituent exhibit greater reactivity in the photocleavage reaction.