화학공학소재연구정보센터
Energy & Fuels, Vol.32, No.7, 7820-7826, 2018
Cobalt-Molybdenum Single-Layered Nanocatalysts Decorated on Carbon Nanotubes and the Influence of Preparation Conditions on Their Hydrodesulfurization Catalytic Activity
Hydrodesulfurization (HDS) of crude oil plays a vital role in the refining of petroleum products. With ever increasing regulations restricting the allowable concentrations of sulfur in fuel, further research is required to produce more efficient and effective catalysts. Herein, we have synthesized carbon nanotube (CNT)-supported cobalt-molybdenum (CoMo) catalysts for HDS of dibenzothiophene (DBT) via Co-first and Mo-first sequential impregnation as well as co-impregnation. Spectroscopic analysis shows the formation of a CoMo catalyst with no free sulfided Co phase present. Additionally, CoMo catalysts are found to be predominantly single-layered nanocatalysts layered on the CNT support. Temperature-programmed reduction (TPR) measurements show differences in reducing temperature of the sulfided CoMo catalysts prepared by the different methods, but catalyst activities for HDS of DBT did not fully align with the TPR-predicted order. Thus, provided the reaction temperature is high enough, reducibility may not always be an adequate gauge of catalytic activity. Conversion of DBT was highest in Mo-first sequential impregnation (81.5%), followed by co-impregnation (64%) and Co-first sequential impregnation (60%) on a CNT support. While these results contrast with some others regarding the order of impregnation, we propose that the preferred impregnation order is actually support-dependent, rather than an absolute quality.