화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.35, No.8, 1339-1352, 1997
A Comparison of Polymerization Characteristics and Mechanisms of Epsilon-Caprolactone and Trimethylene Carbonate with Rare-Earth-Halides
Characteristics and mechanisms of the ring opening-polymerizations of epsilon-caprolactone (CL) and trimethylene carbonate (TMC) with rare earth halides have been compared for the first time. It has been found that rare earth halides show high catalytic activities for the polymerization of TMC, but very low activities for that of CL polymerization. The copolymerization of CL and TMC can proceed only in the presence of high contents of TMC in the comonomer feed. The copolymerization rate decreases rapidly with increasing molar fraction of CL in the feed. The mechanism study by IR, H-1-, C-13-, and P-31-NMR spectra shows that the first step reaction of the polymerization of TMC or CL with rare earth halide is the complexation of monomer to the rare earth ion. The strong coordination of TMC to rare earth ion induces the ring-cleavage of TMC and generation of the cationic species, which initiate the polymerization of TMC via a cationic process. However, the polymerization of CL with rare earth halide is an "activated-hydrolysis" process, in which rare earth catalyst does not initiate the polymerization but serves as an activator of CL.