화학공학소재연구정보센터
Energy Sources Part A-recovery Utilization and Environmental Effects, Vol.40, No.16, 1966-1973, 2018
Modeling dynamic viscosity of n-alkanes using LSSVM technique
One of the important thermophysical properties is viscosity which expresses the resistance of fluid to flow. The least squares support vector machine (LSSVM) algorithm is proposed as a novel method for prediction of dynamic viscosity of different normal alkanes in a wide range of pressure and temperature. As this study is purely computational, 228 experimental data points were gathered from literature for training and validation of the model. The outcomes of the LSSVM algorithm were compared with the actual data with acceptable average absolute relative deviation and the coefficient of determination (R-2) of 1.014 and 0.9968, respectively. The comparisons showed that the predicting model has the potential of prediction of n-alkane dynamic viscosity in terms of pressure, temperature, and carbon number of n-alkane, so this strategy can be used as a simple tool for predicting the behavior of reservoir fluids.