International Journal of Hydrogen Energy, Vol.43, No.25, 11550-11558, 2018
Adaptive thermal control for PEMFC systems with guaranteed performance
Proton exchange membrane fuel cell (PEMFC) s are faced with dynamical load scenario in practical applications, and the resulting temperature variation will decrease the performance and consequently shorten the fuel cell lifetime. To address this problem, a control strategy for regulating the stack temperature is proposed in this paper. Firstly, a thermal management-oriented dynamic model of a water-cooled PEMFC system is built to facilitate the control design. Secondly, considering that the stack temperature should be maintained in a certain range regardless of the dynamical changing current demand, a Barrier Lyapunov function is employed to construct a feedback error of the stack temperature. Thirdly, a set of adaptation laws is designed to estimate the unknown parameters related to the gas flow rates in the flow fields. Particularly, a dynamic inversion tracking methodology is applied to design the non-affine input. A Lyapunov method based analysis demonstrates the stability and convergence of the closed-loop properties. Simulation results are provided to show that the proposed control strategy can satisfy all the control objectives and enhance the control performance compared to the proportional-integral controlled case. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:PEMFC;Thermal management;Adaptive control;Output-constrained;Barrier Lyapunov Function;Non-affine control