화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.32, No.18, 1975-1986, 2018
Conductive and transparent submicron polymer lens array fabrication for electrowetting applications
In this study, we have demonstrated a simple and inexpensive process to fabricate electrowetting lens arrays with various curvatures (micron to submicron) on conductive and transparent polydimethylsiloxane (PDMS) molds without additional metal layers. The microlens arrays were fabricated using one-step dual diffuser lithography process, which utilizes a pair of diffusers to diffract the incident rays of UV light at wide angles before approaching the photoresist. Dimensional control and high fill factor was achieved by just varying the exposure energy and gap between the patterns in the photomask, respectively. The patterns were replicated in conductive and transparent Ag(n)-PDMS (5-20% Ag) with 15 mu m thickness. High conductivity of 4.6 x 10(-1) S/m and high transmission efficiency of 90% was demonstrated by Ag(n)-PDMS molds. Micro-nanolens arrays fabricated by the optimized corelation were utilized to demonstrate switchable wettability behavior of water droplet at different applied voltages. The electrowetting microlens array fabrication method introduced in this work has high potential to be incorporated in optoelectronics and biomedical devices.