화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.125, No.4, 448-456, 2018
Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes
The discharge of dye-contaminated wastewater into natural waterways presents a substantial risk to human and environmental health, therefore necessitating the treatment and removal of toxic dyes from colored wastewaters before their release into the ecosystem. The aim of this study was to isolate and characterize bacterial strains capable of decolorizing and/or degrading azo dyes commonly applied in textile production (monoazo dye Reactive Orange 16 and diazo dye Reactive Green 19) from activated sludge systems used in the treatment of (textile) wastewater. Following a prescreening of 125 isolates for their decolorization potential five strains were retained for further evaluation of decolorization rate and effects of physicochemical parameters using a microtiter plate method. Of those five strains, one strain belonging to the genus Acinetobacter (ST16.16/164) and another belonging to Klebsiella (ST16.16/034) outperformed the other tested strains. Both strains exhibited strong decolorization ability (>80%) within a wide temperature range (20 degrees C-40 degrees C) and retained good decolorization activity at temperatures as low as 10 degrees C (especially strain ST16.16/034). Among the different pH values tested (pH 4, 7 and 10), highest dye removal for both strains occurred at pH 7, with decolorization efficiency remaining relatively high under alkaline conditions (pH 10), and neither isolates decolorization efficiency was negatively impacted by high salt or high dye concentration. Furthermore, both strains displayed the highest rate of decolorization and were able to completely (ST16.16/034) or partly (ST16.16/164) degrade the azo dyes. Altogether, our results support the use of these bacteria in the treatment of industrial wastewaters containing azo dyes. (C) 2017, The Society for Biotechnology, Japan. All rights reserved.