화학공학소재연구정보센터
Journal of Chemical Technology and Biotechnology, Vol.93, No.7, 1988-1996, 2018
Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers
BACKGROUNDVaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTSUsing a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 mu mol cm(-2), salt concentration of the loading buffer: 24mmol L-1 NaCl, and elution buffer: 920mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4mL min(-1)), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSIONUse of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. (c) 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.