화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.524, 93-101, 2018
Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons (Fe/Fe3C@N-C) by a simple metal-organic framework precursor route. The Fe/Fe3C@N-C polyhedrons consisting of Fe and Fe3C nanocrystals enveloped by N-doped carbon shells and accompanying with some carbon nanotubes on the surface were prepared by thermal annealing of Zn-3[Fe(CN)(6)](2)center dot xH(2)O polyhedral particles in nitrogen atmosphere. This material exhibits a large specific surface area of 182.5 m(2) g(-1) and excellent ferromagnetic property. Electrochemical tests indicate that the Fe/Fe3C@N-C hybrid has apparent HER activity with a relatively low overpotential of 236 mV at the current density of 10 mA cm(-2) and a small Tafel slope of 59.6 mV decade(-1). Meanwhile, this material exhibits excellent catalytic activity toward ORR with an onset potential (0.936 V vs. RHE) and half-wave potential (0.804 V vs. RHE) in 0.1 M KOH, which is comparable to commercial 20 wt% Pt/C (0.975 V and 0.820 V), and shows even better stability than the Pt/C. This work provides a new insight to developing multi-functional materials for renewable energy application. (C) 2018 Elsevier Inc. All rights reserved.