- Previous Article
- Next Article
- Table of Contents
Journal of Power Sources, Vol.390, 1-12, 2018
Highly conducting blend hybrid electrolytes based on amine ended block copolymers and organosilane with in-situ formed silica particles for lithium-ion batteries
In this study, amine ended block co-polymers of ethylene oxide/propylene oxide units are reacted separately with poly(ethylene glycol) diglycidyl ether (PEGDGE) and (3-isocyanatopropyl)triethoxysilane (ICPTES) and then mixed in different weight ratios to obtain ion conductive and mechanically stable hybrid solid polymer electrolytes (SPEs). Various characterization techniques are employed to explore the morphology, thermal stability, molecular interaction, backbone structure and dynamic behavior of the blend hybrid SPEs. The hybrid SPE exhibits the maximum ionic conductivity of 1.1 x 10(-4)S cm-1 at 30 degrees C. The electrochemical stability window of hybrid SPEs varies from 4.5 to 4.7 V, depending on salt concentration. Moreover, the "salt free" hybrid membrane is plasticized in an organic electrolyte solvent to enhance the ionic conductivity to an exceptionally high value of 2.4 x 10(-2)S cm(-1) at 30 degrees C and 1.8 x 10(-1)S cm(-1) at 70 degrees C. The test cell consists of plasticized blend hybrid membrane delivers an initial discharge capacity of 142.5 rnAh g(-1) and retains 92% of initial capacity after 70 cycles with coulombic efficiency value of over 99%. Our results show that the blend hybrid electrolytes can be a promising electrolyte system for applications in high energy density lithium-ion batteries.
Keywords:Hybrid electrolyte;Blend;Ionic conductivity;Electrochemical stability window;Lithium-ion battery