화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.22, 6729-6740, 2018
Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion
Understanding the fundamental properties of charge carriers on the surface of semiconductor photo(electro)catalysts is key to the rational design of efficient photo(electro)catalytic devices for sunlight-driven energy conversion. Here high spatial resolution information is always desirable because of the ubiquitous heterogeneity in semiconductor particles. In this Perspective, we review the latest advances in nanoscale imaging and quantitative analysis of charge carrier activities on individual semiconductor particles down to subparticle resolution, covering the approaches of single-molecule super-resolution fluorescence imaging, scanning electron microscopy, and photoluminescence microscopy. We further highlight direct, operando functional assessments of their performances toward the targeted photo(electro)-catalytic processes through single- and subparticle photo current measurements. We also discuss the significance of establishing quantitative relations between the desired functions of photo(electro)catalysts and their surface charge carrier activities. These fundamental relations can provide guiding principles for rationally engineering photo(electro)catalytic systems, for example with cocatalysts, for a broad range of applications.