화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.21, 6661-6667, 2018
Entrapped Single Tungstate Site in Zeolite for Cooperative Catalysis of Olefin Metathesis with Bronsted Acid Site
Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MASs) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MASs are immobilized inside zeolite pores by Bronsted acid sites (BASs) on the inner surface. It is demonstrated that unoccupied BASs in atomic proximity to MASs enhance olefin adsorption and facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes place over the BAS-MAS pair inside the zeolite cavity. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under mild reaction conditions, the propene production rate over WOx/USY is ca. 7300 times that over the industrial WO3/SiO2-based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WOx/USY for a wide range of reaction conditions.