Journal of Polymer Science Part B: Polymer Physics, Vol.32, No.8, 1475-1484, 1994
An X-Ray Pole Figure Analysis on Biaxially Deformed Polyethylene Film
The orientational states induced upon two-step biaxially stretching low-density polyethylene at 25-degrees-C have been investigated. A pole figure analysis of the (200), (020), and (002) crystalline planes has been employed to elucidate the evolution of the molecular crystalline orientation as a function of biaxial stretching. The initial uniaxial-like orientation induced along the extrusion direction of the films was gradually lost upon transverse stretching and, consequently, replaced by a biaxial orientation as suggested by the orientation functions. In these cases, the a crystallographic axis was observed to be strongly oriented along the film normal, thus confining the c and b axes to the film plane. The pole figures clearly indicate that the c and b axes are preferentially aligned 45-degrees with respect to the stretching directions. This unique orientational state of the orthorhombic unit cell of polyethylene has been termed a biaxial-double orientation. Birefringence measurements on the biaxial samples indicated that the amorphous and crystalline regions are simultaneously biaxially oriented. The evolution of the crystalline orientation as a function of stretching was conveniently followed on a White/Spruiell orientation triangle. Quantification was hindered, however, by the presence of different crystal populations in the biaxially stretched samples.