화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.33, No.4, 667-683, 1995
Block-Copolymers as Compatibilizers for Blends of Linear Low-Density Polyethylene and Polystyrene
Compatibilization of blends of linear low-density polyethylene (LLDPE) and polystyrene (PS) with block copolymers of styrene (S) and butadiene (B) or hydrogenated butadiene (EB) has been studied. The morphology of the LLDPE/PS (50/50) composition typically with 5% copolymer was characterized primarily by scanning electron microscopy (SEM). The SEB and SEBS copolymers were effective in reducing the PS domain size, while the SB and SBS copolymers were less effective. The noncrystalline copolymers lowered the tensile modulus of the blend by as much as 50%. Modulus calculations based on a core-shell. model, with the rubbery copolymer coating the PS particle, predicted that 50% of the rubbery SEBS copolymer was located at the interface compared to only 5-15% of the SB and SBS copolymers. The modulus of blends compatibilized with crystalline, nonrubbery SEB and SEBS copolymers approached Hashin’s upper modulus bound. An interconnected interface model was proposed in which the blocks selectively penetrated the LLDPE and PS phases to provide good adhesion and improved stress and strain transfer between the phases.