화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.34, No.2, 349-356, 1996
Thermodynamic Analysis of the Phase-Separation in Polyetherimide-Modified Epoxies
The miscibility of polyetherimides (PEIs) with epoxy monomers based on diglycidylether of bisphenol-A (DGEBA), and with reactive mixtures based on stoichiometric amounts of DGEBA and an aromatic diamine (DA) {either 4,4’-diaminodiphenylsulfone (DDS) or 4,4’-methylenebis[3-chloro 2,6-diethylaniline] (MCDEA)}; was experimentally studied. Cloud-point curves (temperature vs. composition) are reported for PEI-DGEBA and PEI-DGEBA-DA initial mixtures. Cloud-point conversions are reported for the reactive mixtures, for various PEI amounts and polycondensation temperatures. A thermodynamic model based on the Flory-Huggins-Staverman approach, taking polydispersity of both components into account, was used to analyze the experimental information. A single relationship between the interaction parameter and temperature, chi(T), could fit experimental results of mixtures of two commercial PEIs with DGEBA. The addition of DDS led to a decrease in miscibility whereas MCDEA improved the initial miscibility. In both cases, the interaction parameter decreased with conversion, meaning that PEI was more compatible with oligomeric species than with the mixture of starting monomers. The phase separation process in initially miscible rubber- or thermoplastic-modified thermosetting polymers is the result of two factors : increase in the average molar size of the thermosetting oligomer (main driving force favoring demixing), and variation of the interaction parameter with conversion, which may act to increase or decrease the cloud-point conversion determined by the first factor.