화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.4, 363-368, August, 2018
전기 화학 응용을 위한 폴리옥소메탈레이트와 나노물질의 나노하이브리드화
Nanohybridization of Polyoxometalate and Nanomaterials for Electrochemical Application
E-mail:
초록
Polyoxometalates (POMs)는 뛰어난 특성과 전기 화학 응용 분야에 대한 많은 잠재력을 가지고 있다. POM은 매우 잘 녹는 성질 때문에 전기화학 소자에서 POM의 잠재력을 최대한 활용하기 위해서는 다양한 기능성 재료에 POM을 고정 화하는 과정이 필수이다. 본 논문에서는 우리는 최근 개발된 고정화 방법인 나노 카본 및 전도성 고분자와 같은 전도성 나노 물질에 POM을 도입하는 기술들에 대해서 논하고자 한다. Langmuir-Blodgett 기술, 층별 자기 조립 및 전기 화학 in-situ 중합을 사용하여 전도성 고분자 매트릭스 및 POM을 나노 카본으로 도입할 수 있는 다양한 고정화 전략을 소개한다. 또한 우리는 POM의 응용 분야인 물 산화용 전극 촉매, 리튬 이온 배터리, 슈퍼커패시터 및 전기화학적 바이오 센서 등의 다양한 전기 화학 응용 분야를 다룬다.
Polyoxometalates (POMs) have outstanding properties and a great deal of potential for electrochemical applications. As POMs are highly soluble, the implementation of POMs in various functional materials is required to fully use their potential in electrochemical devices. Here, we will review the recently developed immobilization methods to incorporate POMs into conductive nanomaterials, such as nanocarbons and conducting polymers. Various immobilization strategies involve POMs entrapped in conducting polymer matrix and integration of POMs into nanocarbons using a Langmuir-Blodgett technique, a layer- by-layer self-assembly, and an electrochemical in-situ polymerization. In addition, we will review a variety of electrochemical applications including electrocatalysts for water oxidation, lithium-ion batteries, supercapacitors, and electrochemical biosensors.
  1. Proust A, Matt B, Villanneau R, Guillemot G, Gouzerh P, Izzet G, Chem. Soc. Rev., 41, 7605 (2012)
  2. Walsh JJ, Bond AM, Forster RJ, Keyes TE, Coord. Chem. Rev., 306, 217 (2016)
  3. Liu SQ, Tang ZY, Nano Today, 5(4), 267 (2010)
  4. Ueda T, ChemElectroChem, 5, 823 (2018)
  5. Ji Y, Huang L, Hu J, Streb C, Song YF, Energy Environ. Sci., 8, 776 (2015)
  6. Genovese M, Lian K, Curr. opin. Solid State Mat. Sci., 19, 126 (2015)
  7. Yang M, Hong SB, Yoon JH, Kim DS, Jeong SW, Yoo DE, Lee TJ, Lee KG, Lee SJ, Choi BG, ACS Appl. Mater. Interfaces, 8, 22220 (2016)
  8. Yang M, Kim DS, Yoon JH, Hong SB, Jeong SW, Yoo DE, Lee TJ, Lee SJ, Lee KG, Choi BG, Analyst, 141, 1319 (2016)
  9. Ruiz V, Suarez-Guevara J, Gomez-Romero P, Electrochem. Commun., 24, 35 (2012)
  10. Kang Z, Wang Y, Wang E, Lian S, Gao L, You W, Hu C, Xu L, Solid State Commun., 129, 559 (2004)
  11. Moriguchi I, Orishikida K, Tokuyama Y, Watabe H, Kagawa S, Teraoka Y, Chem. Mater., 13, 2430 (2001)
  12. Jia XF, Fan DW, Tang PQ, Hao JC, Liu TB, J. Cluster Sci., 17, 467 (2006)
  13. Kurth DG, Lehmann P, Volkmer D, Colfen H, Koop MJ, Muller A, Chesne AD, Chem. Eur. J., 6, 385 (2000)
  14. Ichinose I, Tagawa H, Mizuki S, Lvov Y, Kunitake T, Langmuir, 14(1), 187 (1998)
  15. Liu SQ, Kurth DG, Bredenkotter B, Volkmer D, J. Am. Chem. Soc., 124(41), 12279 (2002)
  16. Lopez X, Carbo JJ, Bo C, Poblet JM, Chem. Soc. Rev., 41, 7537 (2012)
  17. Miras HN, Yan J, Long D, Cronin L, Chem. Soc. Rev., 41, 7403 (2012)
  18. Song Y, Tsunashima R, Chem. Soc. Rev., 41, 7384 (2012)
  19. Wang XL, Wang YL, Miao WK, Hu MB, Tang J, Yu W, Hou ZY, Zheng P, Wang W, Langmuir, 29(22), 6537 (2013)
  20. Moriguchi I, Fendler JH, Chem. Mater., 10, 2205 (1998)
  21. Ball V, Bernsmann F, Werner S, Voegel JC, Piedra-Garza LF, Kortz U, Eur. J. Inorg. Chem., 34, 5115 (2009)
  22. Wang B, Vyas RN, Shaik S, Langmuir, 23(22), 11120 (2007)
  23. Caruso F, Kurth DG, Volkmer D, Koop MJ, Muller A, Langmuir, 14(13), 3462 (1998)
  24. Yang H, Song T, Liu L, Devadoss A, Xia F, Han H, Park H, Sigmund W, Kwon K, Paik U, J. Phys. Chem. C, 117, 17376 (2013)
  25. Chen W, Huang L, Hu J, Li T, Jia F, Song YF, Phys. Chem. Chem. Phys., 16, 19668 (2014)
  26. Garrigue P, Delville MH, Labrugere C, Cloutet E, Kulesza PJ, Morand JP, Kuhn A, Chem. Mater., 16, 2984 (2004)
  27. Tessonnier JP, Goubert-Renaudin S, Alia S, Yan YS, Barteau MA, Langmuir, 29(1), 393 (2013)
  28. Li H, Pang S, Feng X, Mullen K, Bubeck C, Chem. Commun., 46, 6243 (2010)
  29. Ling YY, Huang QA, Zhu MS, Feng DX, Li XZ, Wei Y, J. Electroanal. Chem., 693, 9 (2013)
  30. Yang M, Choi BG, Jung SC, Han YK, Huh YS, Lee SB, Adv. Funct. Mater., 24(46), 7301 (2014)
  31. She ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF, Science, 335, eaad49 (2017)
  32. Toma FM, Sartorel A, Lurlo M, Carraro M, Parisse P, et al., Nat. Chem., 2, 826 (2010)
  33. Guo SX, Liu Y, Lee CY, Bond AM, Zhang J, Geletii YV, Hill CL, Energy Environ. Sci., 6, 2654 (2013)
  34. Ding Y, Li H, Hou Y, Mater. Lett., 221, 264 (2018)
  35. Wu J, Liao L, Yan W, Xue Y, Sun Y, Yan X, Chen Y, Xie Y, ChemSusChem., 5, 1207 (2012)
  36. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K, Angew. Chem.-Int. Edit., 50, 3471 (2011)
  37. Ni L, Yang G, Sun C, Niu G, Wu Z, Chen C, Gong X, Zhou C, Zhao G, Gu J, Ji W, Huo X, Chen M, Diao G, Mater. Today Energy, 6, 53 (2017)
  38. Gomez-Romero P, Chojak M, Cuentas-Gallegos J, Asensio JA, Kulesza PJ, Cansan-Pastor N, Lira-Cantu M, Electrochem. Commun., 4, 149 (2003)
  39. Suarez-Guevara J, Ruiz V, Gomez-Romero P, J. Mater. Chem. A, 2, 1014 (2014)
  40. Suarez-Guevara J, Ruiz V, Gomez-Romero P, Phys. Chem. Chem. Phys., 16, 20411 (2016)
  41. Zhang H, Xie A, Shen Y, Qiu L, Tian X, Phys. Chem. Chem. Phys., 14, 12757 (1276)
  42. Zhang W, Du D, Gunaratne D, Colby R, Lin Y, Laskin J, Electroanalysis, 26, 178 (2014)