Applied Chemistry for Engineering, Vol.29, No.4, 413-418, August, 2018
붕소 화합물로 처리된 편백목재 시험편의 연소시험에 의한 가스 발생
Gas Generation by Burning Test of Cypress Specimens Treated with Boron Compounds
E-mail:
초록
붕산, 5붕산암모늄, 붕산/5붕산암모늄 첨가제로 처리한 편백목재 시험편의 연소가스 발생에 관한 시험을 하였다. 4wt%의 붕소 화합물 수용액으로 각각 편백목재 시험편에 붓으로 3회 칠하였다. 실온에서 건조시킨 후, 콘칼로리미터 (ISO 5660-1)를 이용하여 연소가스를 분석하였다. 그 결과, 붕소 화합물로 처리한 시험편의 두 번째_최대산소 소모율은 0.1067~0.1246 g/s로서 공시험편보다 5.3~18.9% 감소했다. 붕산, 5붕산암모늄으로 처리한 시험편의 비소화면적은 2.0~ 19.0% 감소하였다. 그러나, 붕산/5붕산암모늄으로 처리된 경우 비감쇠면적이 공시험편보다 21.2% 증가하였다. 붕소 화합물로 처리한 시험편의 최대일산화탄소 농도는 0~25% 감소되었다. 이것은 직업안전위생관리국(Occupational Safety and Health Administration, OSHA) 허용기준의 1.6~2.2배의 치명적인 독성을 발생하는 것으로 측정되었다. 붕소화합물은 일산화탄소 감소에는 효과적이었으나 OSHA의 허용기준에는 미치지 못하였다. 붕소화합물은 편백나무의 연소성을 두 번째_최대산소 소모율에 대하여 5.3~18.9%, 최대일산화탄소 발생에 대하여 0~25% 억제하였다.
Cypress woods treated individually with boric acid (BA4), ammonium pentaborate (APB4), or BA4/APB4 additives were examined for combustion gases. Each of the specimens was painted with a 4 wt% solution of boron compounds three times. Dried at room temperature, the combustion gas was analyzed using a cone calorimeter (ISO 5660-1). Consequently, the second maximum oxygen consumption rate of the specimen treated with boron compounds was 0.1067 to 0.1246 g/s, which was 5.3 to 18.9%, respectively lower than that of the blank specimen. The specific extinction area of specimens treated with BA4 and APB4 was also 2.0 to 19.0% lower, respectively. However, treated with BA4/APB4 showed 21.2% higher than that of the blank specimen. The maximum carbon monoxide concentration of the specimens with boron compounds was reduced by 0 to 25%. It was estimated to be 1.6 to 2.2 times higher than the permissible exposure limits by Occupational Safety and Health Administration (OSHA), indicating a fatal toxicity. The boron compounds were effective in reducing carbon monoxide, but didn’t meet the OSHA limit. The boron compound inhibited the burning behavior of the cypress wood, which suppressed the second maximum oxygen consumption rate by 5.3 to 18.9% and the maximum carbon monoxide generation by 0 to 25%.
Keywords:Boron compounds;Oxygen consumption rate;Specific extinction area;Carbon monoxide;Cone calorimeter
- Kozlowski R, Hewig M, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
- Stevens R, Daan SE, Bezemer R, Kranenbarg A, Polym. Degrad. Stabil., 91, 832 (2006)
- Chung YJ, Kim Y, Kim S, J. Ind. Eng. Chem., 15(6), 888 (2009)
- Chung YJ, J. Korean Ind. Eng. Chem., 18(3), 251 (2007)
- Zhao P, Guo C, Li L, Constr. Build. Mater., 170, 193 (2018)
- Jiang J, Li JZ, Hu J, Fan D, Constr. Build. Mater., 24, 2633 (2010)
- Jiang T, Feng X, Wang Q, Xiao Z, Wang F, Xie Y, Constr. Build. Mater., 72, 1 (2014)
- Pereyra AM, Giudic CA, Fire Saf. J, 44, 497 (2009)
- White RH, Dietenberger MA, Wood as an Engineering Material, Ch.17, USDA, Forest Product Laboratory, Madison, WI, USA (1999).
- Ernst A, Zibrak JD, N. Engl. J. Med., 339, 1603 (1998)
- Von Burg R, J. Appl. Toxicol., 19, 379 (1999)
- King BG, J. Ind. Hyg. Toxicol., 31, 365 (1949)
- Luft UC, Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
- Purser DA, J. Fire Sci., 2, 20 (1984)
- Babrauskas V, New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier d Science Publisher, London, UK (1986).
- Hirschler MM, ACS Symp. Ser., 797, 293 (2001)
- Babrauskas V, Interflam 2001, 71-88, Interscience Communications Ltd., London, UK (2001).
- Pearce FM, Khanna YP, Raucher D, Thermal Characterization of Polymeric Materials, Ch. 8, Academic Press, New York, USA (1981).
- Lee CH, Lee CW, Kim JW, Suh CK, Kim KM, Korean Patent 2011-0034978 (2011).
- Jimenez M, Duquesne S, Bourbigot S, Thermochim. Acta, 449(1-2), 16 (2006)
- Chung YJ, Jin E, Fire Sci. Eng., 32, 7 (2018)
- Balakrishnan T, Bhagannaryana G, Ramamurthi K, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 71, 578 (2008)
- ISO 5660-1, Heat release rate(cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland (2015).
- Simpson WT, Wood Handbook-Wood as an Engineering Material, Ch. 12, USDA Forest Product Laboratory, Madison, WI, USA (1987).
- Babrauskas V, The SFPE Handbook of Fire Protection Engineering, 4th Ed., National Fire Protection Association, MA, USA (2008).
- Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64, 529 (1999)
- Wang Q, Li J, Winady JE, Wood Sci. Technol., 38, 375 (2004)
- Saxena NK, Gupta DR, Fire Technol., 11, 329 (1990)
- Hagen M, Hereid J, Delichtsios MA, Zhang J, Bakirtzis D, Fire Saf. J., 44, 1053 (2009)
- Kimmerle G, J. Combust. Toxicol., 1, 4 (1974)
- Mourituz AP, Mathys Z, Gibson AG, Composites A, 38, 1040 (2005)
- OHSA, Carbon Monoxide, OSHA Fact Sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
- OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA’s Comments, Jannuary 19, USA (1989).
- MSHA, Carbon Monoxide, MSHA’s Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor, USA (2015).
- Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)