Macromolecular Research, Vol.26, No.7, 623-629, July, 2018
Significance of Polymeric Nanowire-Network Structures for Stable and Efficient Organic Solar Cells
E-mail:, ,
Evolution of favourable nanomorphology which can withstand external stimuli is a critical issue for efficient and stable organic solar cells. Here, we demonstrate a novel strategy for the stabilization of nanomorphology of organic solar cells by inducing polymeric nanowire network structures. Thermal annealing of poly(3- hexylthiophene-2,5-diyl) nanowires, highly crystalline, 1-dimensional structures held together through interchain π-π stacking, led to the formation of nanowire network structures confirmed through small angle neutron scattering measurements. The physically interconnected network structures form robust electron donor domains and impose confinement which suppresses the aggregation of the electron acceptor, [6,6]-phenyl-C61-butylric acid methyl ester. Organic solar cells having the nanowire network structures showed increased power conversion efficiencies and dramatically enhanced thermal stability compared to bulk heterojunction (BHJ) and non-network nanowire-based devices. Furthermore, the performance of the nanowire network-based devices was inversely related to the size of the networks, attesting to the significance of nanoconfined geometry formed within nanowire network structures.
- Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y, Nat. Photonics, 11, 85 (2016)
- Li SS, Ye L, Zhao WC, Zhang SQ, Mukherjee S, Ade H, Hou JH, Adv. Mater., 28(42), 9423 (2016)
- Ye L, Zhao W, Li S, Mukherjee S, Carpenter JH, Awartani O, Jiao X, Hou J, Ade H, Adv. Energy Mater., 7, 160200 (2017)
- Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J, J. Am. Ceram. Soc., 139, 7148 (2017)
- Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
- Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC, Appl. Phys. Lett., 78, 841 (2001)
- Cheng P, Yan CQ, Lau TK, Mai JQ, Lu XH, Zhan XW, Adv. Mater., 28(28), 5822 (2016)
- Cheng P, Yan C, Wu Y, Dai S, Ma W, Zhan X, J. Mater. Chem. C, 4, 8086 (2016)
- Cheng P, Zhan X, Chem. Soc. Rev., 45, 2544 (2016)
- Liu Q, Toudert J, Liu F, Mantilla-Perez P, Bajo MM, Russell TP, Martorell J, Adv. Energy Mater., 7, 170120 (2017)
- Rahmanudin A, Jeanbourquin XA, Hanni S, Sekar A, Ripaud E, Yao L, Sivula K, J. Mater. Chem. A, 5, 17517 (2017)
- Tan L, Yang F, Kim MR, Li P, Gangadharan DT, Margot J, Izquierdo R, Chaker M, Ma D, ACS Appl. Mater. Interfaces, 9, 26257 (2017)
- Wang SH, Kappl M, Liebewirth I, Muller M, Kirchhoff K, Pisula W, Mullen K, Adv. Mater., 24(3), 417 (2012)
- Um HA, Lee DH, Heo DU, Yang DS, Shin J, Baik H, Cho MJ, Choi DH, ACS Nano, 9, 5264 (2015)
- Lee Y, Oh JY, Son SY, Park T, Jeong U, ACS Appl. Mater. Interfaces, 7, 27694 (2015)
- Chang M, Su Z, Egap E, Macromolecules, 49(24), 9449 (2016)
- Chu PH, Kleinhenz N, Persson N, McBride M, Hernandez JL, Fu B, Zhang G, Reichmanis E, Chem. Mater., 28, 9099 (2016)
- Xin H, Kim FS, Jenekhe SA, J. Am. Chem. Soc., 130(16), 5424 (2008)
- Jo SB, Lee WH, Qiu L, Cho K, J. Mater. Chem., 22, 4244 (2012)
- Kim DH, Mei J, Ayzner AL, Schmidt K, Giri G, Appleton AL, Toney MF, Bao Z, Energy Environ. Sci., 7, 1103 (2014)
- Kim JH, Kim M, Jinnai H, Shin TJ, Kim H, Park JH, Jo SB, Cho K, ACS Appl. Mater. Interfaces, 6, 5640 (2014)
- Lee J, Jo SB, Kim M, Kim HG, Shin J, Kim H, Cho K, Adv. Mater., 6706, 26 (2014)
- Oh JY, ShiN M, Lee HW, Lee YJ, Baik HK, Jeong U, ACS Appl. Mater. Interfaces, 6, 7759 (2014)
- Kim M, Park JH, Kim JH, Sung JH, Jo SB, Jo MH, Cho K, Adv. Eng. Mater., 5, 140131 (2015)
- Yan H, Song Y, McKeown GR, Scholes GD, Seferos DS, Adv. Mater., 27(23), 3484 (2015)
- Lee J, Sin DH, Moon B, Shin J, Kim HG, Kim M, Cho K, Ener. Environ. Sci., 10, 247 (2017)
- Do TT, Hong HS, Ha YE, Park CY, Kim JH, Macromol. Res., 23(2), 177 (2015)
- Kim JY, Kim YU, Kim HJ, Um HA, Shin J, Cho MJ, Choi DH, Macromol. Res., 24(11), 980 (2016)
- Park KH, An Y, Jung S, Park H, Yang C, ACS Nano, 11, 7409 (2017)
- Machui F, Langner S, Zhu XD, Abbott S, Brabec CJ, Sol. Energy Mater. Sol. Cells, 100, 138 (2012)
- Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J, Nat. Mater., 7(2), 158 (2008)
- Karagiannidis PG, Georgiou D, Pitsalidis C, Laskarakis A, Logothetidis S, Mater. Chem. Phys., 129(3), 1207 (2011)
- Alexander CJT, Ayzner L, Tolbert SH, Schwartz BJ, J. Phys. Chem. C, 113, 20050 (2009)
- Choi WT, Song J, Ko J, Jang Y, Kim TH, Han YS, Lim J, Lee C, Char K, J. Polym. Sci. B: Polym. Phys., 54(2), 128 (2016)
- Ko J, Song J, Yoon H, Kim T, Lee C, Berger R, Char K, Adv. Mater. Interf., 3, 160026 (2016)
- Li YC, Chen KB, Chen HL, Hsu CS, Tsao CS, Chen JH, Chen SA, Langmuir, 22(26), 11009 (2006)
- Chen CY, Chan SH, Li JY, Wu KH, Chen HL, Chen JH, Huang WY, Chen SA, Macromolecules, 43(17), 7305 (2010)
- Bauer BJ, Hobbie EK, Becker ML, Macromolecules, 39(7), 2637 (2006)
- Hough LA, Islam MF, Hammouda B, Yodh AG, Heiney PA, Nano Lett., 6, 313 (2006)
- Urbina A, Miguel C, Delgado JL, Langa F, Diaz-Paniagua C, Batallan F, Phys. Rev. B, 78, 045420 (2008)
- Kiel JW, Eberle AP, Mackay ME, Phys. Rev. Lett., 105, 168701 (2010)
- Kiel JW, Mackay ME, Kirby bJ, Maranville BB, Majkrzak CF, J. Chem. Phys., 133, 074902 (2010)