화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.65, 418-422, September, 2018
Improvement in the photovoltaic performance of a dye-sensitized solar cell by the addition of CeO2:Gd nanoparticles in the photoanode
E-mail:
TiO2/CeO2:Gd photoanodes with different concentrations of CeO2:Gd were fabricated to improve the photoconversion efficiency of a dye-sensitized solar cell (DSSC). The CeO2:Gd nanoparticle-based DSSC showed a photoconversion efficiency of 8.03% with an improvement of 45% compared to that of the conventional TiO2 nanoparticle-based DSSC due to the increased diffuse reflectance of visible light. The TiO2/CeO2:Gd photoanode had higher charge transfer resistance than conventional TiO2 nanoparticlebased photoanode. It is suggested that the improvement in the conversion efficiency results from the enhanced highly favored light scattering and downconversion photoluminescence of the CeO2:Gd nanoparticles.
  1. O'Regan B, Gratzel M, Nature, 353, 737 (1991)
  2. Gratzel M, Nature, 414, 338 (2001)
  3. Cho S, Hwang SH, Kim C, Jang J, J. Mater. Chem., 22, 12164 (2012)
  4. Gratzel M, Photochem. Photobiol. C, 4, 145 (2003)
  5. Chae J, Kim DY, Kim S, Kang M, J. Ind. Eng. Chem., 16(6), 906 (2010)
  6. Hore S, Vetter C, Kern R, Smit H, Hinsch A, Sol. Energy Mater. Sol. Cells, 90(9), 1176 (2006)
  7. Chen DH, Huang FZ, Cheng YB, Caruso RA, Adv. Mater., 21(21), 2206 (2009)
  8. Lee KJ, Hwang JS, Han YS, J. Ind. Eng., 50, 96 (2017)
  9. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H, Chem. Rev., 110(11), 6595 (2010)
  10. Pang A, Sun X, Ruan H, Li Y, Dai S, Wei M, Nano Energy, 5, 82 (2014)
  11. Zhi J, Chen A, Cui H, Xie Y, Huang F, Phys. Chem. Chem. Phys., 17, 5103 (2015)
  12. Lin J, Guo M, Yip CT, Lu W, Zhang GG, Liu XL, Zhou LM, Chen XF, Huang HT, Adv. Funct. Mater., 23(47), 5952 (2013)
  13. Anitha VC, Banerjee AN, Joo SW, Min BK, J. Ind. Eng. Chem., 29, 227 (2015)
  14. Miao QQ, Wu LQ, Cui JN, Huang MD, Ma TL, Adv. Mater., 23(24), 2764 (2011)
  15. Lee JK, Jeong BH, Jang SI, Kim YG, Jang YW, Lee SB, Kim MR, J. Ind. Eng. Chem., 15(5), 724 (2009)
  16. Hwang SH, Kim C, Song H, Son S, Jang J, A.C.S Appl. Mater. Interfaces, 4, 5287 (2012)
  17. Peng W, Han L, J. Mater. Chem., 22, 20773 (2012)
  18. Dadgostar S, Tajabadi F, Taghavinia N, A.C.S Appl. Mater. Interfaces, 4, 2964 (2012)
  19. Huang FZ, Chen DH, Zhang XL, Caruso RA, Cheng YB, Adv. Funct. Mater., 20(8), 1301 (2010)
  20. Hossain MA, Oh SH, Lim SW, J. Ind. Eng. Chem., 51, 122 (2017)
  21. Dong ZH, Lai XY, Halpert JE, Yang NL, Yi LX, Zhai J, Wang D, Tang ZY, Jiang L, Adv. Mater., 24(8), 1046 (2012)
  22. Jiang WT, Wu CT, Sung YH, Wu JJ, A.C.S Appl. Mater. Interfaces, 5, 911 (2013)
  23. Jung J, Myoung J, Lim S, Thin Solid Films, 520(17), 5779 (2012)
  24. Chung J, Myoung J, Oh J, Lim S, J. Phys. Chem. C, 114, 21360 (2010)
  25. Yun S, Lee J, Chung J, Lim S, J. Phys. Chem. Solids, 71, 1724 (2010)
  26. Qian JF, Liu P, Xiao Y, Jiang Y, Cao YL, Ai XP, Yang HX, Adv. Mater., 21(36), 3663 (2009)
  27. Li KN, Wang YF, Xu YF, Chen HY, Su CY, Kuang DB, A.C.S Appl. Mater. Interfaces, 5, 5105 (2013)
  28. Yu H, Bai Y, Zong X, Tang F, Lu GQM, Wang L, Chem. Commun., 48, 7386 (2012)
  29. Hwang SH, Shin DH, Yun J, Kim C, Choi M, Jang J, Chem. Eur. J., 20, 4439 (2014)
  30. Hwang SH, Roh J, Jang J, Chem. Eur. J., 19, 13120 (2013)
  31. Khawaja EE, Durrani SMA, Al-Kuhaili MF, J. Phys. D-Appl. Phys., 36, 545 (2003)
  32. Sun C, Li H, Chen L, Energy Environ. Sci., 5, 8475 (2012)
  33. Liu Y, Tang Y, Ma Z, Singh M, He Y, Dong W, Sun C, Zhu B, Sci. Rep., 5, 11946 (2015)
  34. Debnath S, Islam MR, Khan MSR, Bull. Mat. Sci., 30, 315 (2007)
  35. Roh J, Hwang SH, Jang J, A.C.S Appl. Mater. Interfaces, 6, 19825 (2014)
  36. Badescu V, Badescu AM, Renew. Energy, 34(6), 1538 (2009)
  37. Lee E, Ryu J, Jang J, Chem. Commun., 49, 9995 (2013)
  38. Wang J, Wu J, Lin J, Huang M, Huang Y, Lan Z, Xiao Y, Yue G, Yin S, Sato T, ChemSusChem, 5, 1307 (2012)
  39. Wu J, Wang J, Lin J, Lan Z, Tang Q, Huang M, Huang Y, Fan L, Li Q, Tang Z, Adv. Eng. Mater., 2, 78 (2012)
  40. Trupke T, Green MA, Wurfel P, J. Appl. Phys., 92, 1668 (2002)
  41. Wang F, Liu X, Chem. Soc. Rev., 38, 976 (2009)
  42. He W, Atabaev TS, Kim HK, Hwang YH, J. Phys. Chem. C, 117(35), 17894 (2013)
  43. Li Y, Pan K, Wang G, Jiang B, Tian C, Zhou W, Qu Y, Liu S, Feng L, Fu H, Dalton Trans., 42, 7971 (2013)
  44. Liu X, Chen S, Wang X, J. Lumines., 127, 650 (2007)
  45. Wang Q, Moser JE, Gratzel M, J. Phys. Chem. B, 109(31), 14945 (2005)
  46. Liao XH, Zhu JM, Zhu JJ, Xu JZ, Chen HY, Chem. Commun. (Cambridge,U.K.), 937 (2001).
  47. Ranjith KS, Saravanan P, Chen SH, Dong CL, Chen CL, Chen SY, Asokan K, Kumar RTR, J. Phys Chem C., 118, 27039 (2014)
  48. He Z, Que W, Sun P, Ren J, A.C.S Appl. Mater. Interfaces, 5, 12779 (2013)
  49. Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin SM, Gratzel M, J. Phys. Chem. C., 111, 6550 (2007)
  50. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S, J. Chem B, 110, 1387 (2006)