Korean Journal of Chemical Engineering, Vol.35, No.9, 1791-1799, September, 2018
Modeling and simulation for acrylamide polymerization of super absorbent polymer
E-mail:,
In view of the scale up of a batch reactor for super absorbent polymer (SAP), a dynamic mathematical model of a commercial scale batch reactor was developed with mass balance, energy balance, and complex polymerization kinetics. The kinetic parameters of the polymerization were estimated on the basis of the established mathematical model and reference data. Simulation results were validated with less than 10% marginal error compared with reference data. A case study was executed in terms of dynamic simulation for eight different initial concentrations of initiator and monomer to analyze the influence of initial concentration and predict the operation condition for desired product. The results were compared with various reference data, and good agreement was achieved. From the results, we argue that the methodology and results from this study can be used for the scale up of a polymerization batch reactor from the early stage of design.
Keywords:Super Absorbent Polymer;Polyacrylamide;Parameter Estimation;Dynamic Simulation;Batch Reactor
- Francis S, Kumar M, Varshney L, Radiat. Phys. Chem., 69, 481 (2014)
- Chang SC, Yoo JS, Woo JW, Choi JS, Korean J. Chem. Eng., 16(5), 581 (1999)
- Sojka RE, Entry JA, Environ. Pollut., 108, 405 (2000)
- Mohammad JZ, Kabiri K, Iran. Polym. J., 17, 451 (2008)
- Wisniewska M, Chibowski S, Urban T, J. Ind. Eng. Chem., 21, 925 (2015)
- Sodeifian G, Daroughegi R, Aalaie J, Korean J. Chem. Eng., 32(12), 2484 (2015)
- Chamovsk D, Cvetkovska M, Grchev T, Croat. Chem. Acta, 81, 461 (2008)
- Pourjavadi A, Mahdavinia GR, Turk. J. Chem., 30(5), 595 (2006)
- Oladipo AA, Synthesis and characterization of modified chitosanbased novel superabsorbent hydrogel: swelling and dye adsorption behavior, Master’s Thesis EMU (2011).
- Sadeghi M, Hosseinzadeh H, Turk. J. Chem., 32(3), 375 (2008)
- Scott RA, Peppas NA, AIChE J., 43, 135 (1996)
- Ishige T, Hamielec AE, J. Appl. Polym. Sci., 17, 1479 (1973)
- Giz A, Catalgil-Giz H, Alb A, Brousseau JL, Reed WF, Macromolecules, 34(5), 1180 (2001)
- Hunkeler D, Macromolecules, 24, 2160 (1991)
- Preusser C, Chovancova A, Lacik I, Hutchinson RA, Macromol. React. Eng., 10, 49 (2016)
- Process Systems Enterprise Co., https://www.psenterprise.com (2017).
- Vo ND, Jung MY, Oh DH, Park JS, Moon I, Oh M, Combust. Flame, 189, 12 (2018)
- Kim SH, Nyande BW, Kim HS, Park JS, Lee WJ, Oh M, J. Hazard. Mater., 308, 120 (2016)
- Venkatarao K, Santappa M, J. Polym. Sci., 8, 1785 (1970)
- Abu-Thabit NY, World J. Chem. Education, 5, 94 (2017)
- Echtermeyer A, Amar Y, Zakrzewski J, Lapkin A, Beilstein. J. Org. Chem., 13, 150 (2017)
- Lin HR, Eur. Polym. J., 37, 1507 (2001)
- Rintoul I, Wandrey C, Lat. Am. Appl. Res., 40, 365 (2010)
- Kang SC, Choi YJ, Kim HZ, Kyong JB, Kim DK, Macromol. Res., 12(1), 107 (2004)
- Pladis P, Kotrotsiou O, Gkementzoglou C, Kiparissides C, 2015 10th Int. Conf. Panhellenic Scientific Conference in Chemical Engineering (2015).
- Abdollahi Z, Gomes VG, Chemeca 2011: Engineering a Better World (2011).
- Xu J, Zhao WP, Wang CX, Wu YM, Express. Polym. Lett., 4, 275 (2010)
- Sigma-aldrich Co., https://www.sigmaaldrich.com/catalog/product/aldrich/767379?lang=ko®ion=KR&cm_sp=Insite-_-prodRec-Cold_xviews-_-prodRecCold10-1 (2018).