화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.5, 800-805, September, 2018
동축전기방사에 의해 제조된 Poly(vinyl alcohol)/Poly(ethylene terephthalate) 복합 나노섬유
Poly(vinyl alcohol)/Poly(ethylene terephthalate) Composite Nanofibers Produced by Coaxial Electrospinning
E-mail:
초록
동축전기방사에 의해 poly(vinyl alcohol)(PVA)(core)/poly(ethylene terephthalate)(PET)(shell) 복합 나노섬유를 제조하고 이의 특성을 고찰하였다. 성공적인 동축전기방사를 위해서 두 고분자 용액의 공급속도와 전압의 설정이 중요하였으며, 이를 상호 조절하여 선형성과 규칙성이 양호한 복합 나노섬유를 제조하였다. 전자현미경을 통하여 나노크기의 섬유 및 core-shell 구조가 관찰되었으며, 분광분석으로부터 동축전기방사된 나노섬유 내에 존재하는 각각의 고분자의 존재를 확인하였다. 또한 PVA의 존재에 기인하여 복합 나노섬유 웹의 접촉각이 PET 나노섬유 웹 대비 감소하였다. 따라서 동축전기방사는 나노구조를 유지하면서 수용성 고분자를 블렌드함으로써 소수성 나노섬유의 친수성을 개선할 수 있을 뿐만 아니라, 수분산성 나노입자나 단백질을 포함한 수용성 생리활성 물질을 도입할 수 있는 효과적인 방법이라고 생각된다.
Poly(vinyl alcohol) (PVA) (core)/poly(ethylene terephthalate) (PET) (shell) composite nanofibers were produced by coexial electrospinning and their characteristics were investigated. It was important to establish feed rate of each polymer solution and voltage for a successful coaxial electrospinning, and the composite nanofibers with good linearity and regularity were produced by an interactive control of these factors. The nano-sized fibers and core-shell structures were observed through electron microscopes and the presence of each polymer in the coaxially electrospun nanofibers was confirmed by spectroscopic analyses. Also, the contact angle between water and composite nanofiber web decreased compared with that of PET nanoweb due to the presence of PVA. It is suggested that coaxial electrospinning is an effective technique to improve hydrophilicity of hydrophobic nanofibers by blending a water-soluble polymer with maintaining nanostructures, and to incorporate water-dispersable nanoparticles and water-soluble bioactive components including proteins in the nanofibers.
  1. Doshi J, Reneker DH, J. Electrost., 25, 151 (1995)
  2. Yoon Y, Hsiao BS, Chu B, J. Membr. Sci., 338(1-2), 145 (2009)
  3. Zhao ZG, Zheng JF, Wang MJ, Zhang HY, Han CC, J. Membr. Sci., 394, 209 (2012)
  4. Loscertales IG, Barrero A, Marquez M, Spretz R, Velarde-Ortiz R, Larsen G, J. Am. Chem. Soc., 126(17), 5376 (2004)
  5. Diaz JE, Barrero A, Marquez M, Loscertales IG, Adv. Funct. Mater., 16(16), 2110 (2006)
  6. Lallave M, Bedia J, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T, Otero JC, Marquez M, Barrero A, Loscertales IG, Adv. Mater., 19(23), 4292 (2007)
  7. Lu Y, Jiang H, Tu K, Wang L, Acta Biomater., 5, 1592 (2009)
  8. Nguyen TT, Chung OH, Park JS, Carbohydr. Polym., 86, 1799 (2011)
  9. Gulfam M, Lee JM, Kim JE, Lim DW, Lee EK, Chung BG, Langmuir, 27(17), 10993 (2011)
  10. Pakravan M, Heuzey MC, Ajji A, Biomacromolecules, 13(2), 412 (2012)
  11. Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, Tesarova M, Lukas D, Amler E, Biomacromolecules, 13(4), 952 (2012)
  12. Ozcam AE, Roskov KE, Genzer J, Spontak RJ, ACS Appl. Mater. Interfaces, 4, 59 (2012)
  13. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S, Biomaterials, 26, 2527 (2005)
  14. Xu GR, Liu XY, Xu JM, Li L, Su HC, Zhao HL, Feng HJ, Appl. Surf. Sci., 434, 573 (2018)
  15. Lopes-Da-Silva JA, Veleirinho B, Delgadillo I, J. Nanosci. Nanotechnol., 9, 3798 (2009)
  16. Li G, Zhao Y, Lv M, Shi Y, Cao D, Colloids Surf. A: Physicochem. Eng. Asp., 436, 417 (2013)
  17. Elahi F, Lu W, Guoping G, Khan F, J. Bioengineer. Biomed. Sci., 3, 121 (2013)
  18. Sun B, Duan B, Yuan XY, J. Appl. Polym. Sci., 102(1), 39 (2006)
  19. Yan E, Cao M, Wang Y, Meng Y, Zheng H, Hao X, Yu Z, Ba X, Gu X, Zhang D, Mater. Lett., 167, 13 (2016)
  20. Hu SH, Tsuji M, Horii F, Polymer, 35(12), 2516 (1994)
  21. Phinyocheep P, Saelao I, Buzare JY, Polymer, 48(19), 5702 (2007)