화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.10, 2024-2035, October, 2018
Investigation of the cell disruption methods for maximizing the extraction of arginase from mutant Bacillus licheniformis (M09) using statistical approach
E-mail:
Arginase, an intracellular enzyme produced by Bacillus licheniformis (NRS-1264) is effectively used as a drug in the treatment of arginine-dependent cancers, and it is essential for controlling acute neurological disorders. We investigated the effect of various cell disruption methods for maximizing the extraction of intracellular arginase from mutant Bacillus licheniformis (M09), followed by comparing optimization methods, one factor at a time (OFAT), evolutionary operation (EVOP) and response surface method (RSM). Ultrasonication for 2-5min having a suspension volume in the range of 12-20mL at a radio frequency power between 30-70 W appeared to be the most effective extraction technique for arginase. The arginase yield decreased in the range of 50-70 W of RF power/16-20mL suspension volume and 4-5min sonication time. EVOP predicted a maximum arginase extraction of 3,910 IUㆍL-1 at 2min sonication having 16mL suspension volume at 30W RF power. However, response surface optimization suggested an optimized condition of 3min sonication having 14.5mL suspension volume at 35W RF power in which the maximum arginase activity in the medium was 3,600 IUㆍL-1.
  1. Bewley MC, Lott JS, Baker EN, Patchett ML, Febs Lett., 386, 215 (1996)
  2. Cheng PM, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC, Cancer Res., 67, 309 (2007)
  3. Feun L, Savaraj N, Expert. Opin. Investig. Drugs, 15, 815 (2006)
  4. Jenkinson CP, Grody WW, Cederbaum SD, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 114, 107 (1996)
  5. Prozesky OW, Grabow WOK, Merwe VD, Coetzee JN, J. Gen. Microbiol., 77, 237 (1973)
  6. Zeller EA, Orden V, Kirchheimer WF, J. Bacteriol., 67, 153 (1954)
  7. Green M, Mcphieii P, J. Biol. Chem., 265, 1601 (1989)
  8. Borkovich KA, Weiss RL, J. Biol. Chem., 262, 7081 (1987)
  9. Kim H, Kim KH, Yonsei Med. J., 37, 405 (1996)
  10. Chang YK, Chu L, Biochem. Eng. J., 35, 37 (2007)
  11. Kar JR, Singhal RS, Biotechnol. Rep., 5, 89 (2015)
  12. Barba FJ, Grimi N, Vorobiev E, Food Eng. Rev., 7, 45 (2015)
  13. Chisti Y, Moo-Young M, Enzyme Microb. Technol., 8, 194 (1986)
  14. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Romero-Ogawa MA, Parra-Saldivar R, Microb. Biotechnol., 8, 190 (2015)
  15. Rosello-Soto E, Parniakov O, Barba FJ, Food Eng. Rev., 8, 214 (2016)
  16. Puri M, Gupta S, Pahuja P, Kaur A, Kanwar JR, Kennedy JF, Appl. Biochem. Biotechnol., 160(1), 98 (2010)
  17. Joshi C, Singhal RS, Korean J. Chem. Eng., 35(1), 195 (2018)
  18. Barba FJ, Zhu Z, Orlien V, Trends Food Sci. Technol., 49, 96 (2016)
  19. Banerjee R, Bhattacharyya BC, Biotechnol. Bioeng., 41, 67 (1993)
  20. Dagbagli S, Goksungur Y, Electron. J. Biotechnol., 11, 11 (2008)
  21. Liu Y, Gong G, Wu S, Carbohydr. Polym., 110, 278 (2014)
  22. Joshi C, Singhal RS, Biocat. Agri. Biotech., 8, 228 (2016)
  23. Andersen CJ, Strange B, Scand. J. Clin. Lab. Investig., 11, 122 (1959)
  24. Asakura T, Adachi K, Schwartz E, J. Biol. Chem., 253, 6423 (1978)
  25. Dange AD, Masurekar VB, J. Biosci., 3, 129 (1981)
  26. Mukherjee G, Banerjee R, Appl. Biochem. Biotechnol., 118(1-3), 33 (2004)
  27. Middelberg APJ, Biotechnol. Adv., 13, 491 (1995)
  28. Singhal RS, Jayakar SS, Glob. J. Biotechnol. Biochem., 7, 90 (2012)
  29. Harrison ST, Biotechnol. Adv., 9, 217 (1991)
  30. Anis SNS, Nurhezreen MI, Sudesh K, Amirul AA, Appl. Biochem. Biotechnol., 167(3), 524 (2012)
  31. Helenius A, Simons K, Biochim. Biophys. Acta, 415, 29 (1975)
  32. Galabova D, Tuleva B, Spasova D, Enzyme Microb. Technol., 18(1), 18 (1996)
  33. Harrison ST, Chase HA, Dennis JS, Biotechnol. Tech., 5, 115 (1991)
  34. Zhao FS, Yu JY, Biotechnol. Prog., 17(3), 490 (2001)
  35. Lovitt RW, Jones M, Collins SE, Coss GM, Yau CP, Attouch C, Process Biochem., 36(5), 415 (2000)
  36. Feril LB, Kondo T, Ultrason. Sonochem., 12, 353 (2005)
  37. Lee KJ, Row KH, Korean J. Chem. Eng., 23(5), 779 (2006)
  38. Gogate PR, Kabadi AM, Biochem. Eng. J., 44, 60 (2009)
  39. Ho CW, Chew TK, Ling TC, Kamaruddin S, Tan WS, Tey BT, Process Biochem., 41(8), 1829 (2006)
  40. Feliu JX, Cubarsi R, Villaverde A, Biotechnol. Bioeng., 58(5), 536 (1998)
  41. Choonia HS, Lele SS, Chem. Eng. Commun., 198(5), 668 (2011)
  42. Kapucu H, Gulsoy N, Mehmetoglu U, Biochem. Eng. J., 5, 57 (2000)
  43. Lateef A, Oke JK, Prapulla SG, Enzyme Microb. Technol., 40(5), 1067 (2007)
  44. Bankar SB, Singhal RS, Bioresour. Technol., 101(21), 8370 (2010)
  45. Ruchir C, Singhal RS, J. Microbiol. Biotechnol., 20, 950 (2010)
  46. Kumar S, Katiyar N, Ingle P, Negi S, Bioresour. Technol., 102(7), 4909 (2011)
  47. Mahapatra P, Kumari A, Indian J. Microbiol., 50, 396 (2010)
  48. Vargas LHM, Piao ACS, Domingos RN, Carmona EC, World J. Microbiol. Biotechnol., 20, 137 (2004)
  49. Apar DK, Ozbek B, Chem. Biochem. Eng. Q., 22, 113 (2008)
  50. Demirhan E, Ozbek B, Chem. Eng. Commun., 196(7), 767 (2009)
  51. Li S, Zhang H, Han D, Row KH, Korean J. Chem. Eng., 29(5), 650 (2012)
  52. Koubaa M, Rosello-Soto E, Barba FJ, J. Agric. Food Chem., 63, 6835 (2015)
  53. Yaldagard M, Mortazavi SA, Tabatabaie F, Korean J. Chem. Eng., 25(3), 517 (2008)
  54. Pchelintsev NA, Adams PD, Nelson DM, PLoS One, 11, 1 (2016)