화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.10, 2138-2144, October, 2018
Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors
E-mail:
Carbon-embedded ordered macroporous titania (C-MAC TiO2) spheres are prepared in solution by the cooperative self-assembly of polymer beads and a titania precursor within evaporative emulsions and subsequent direct carbonization. Because the highly reactive titania precursors are easily crosslinked to form gels early in evaporation before the polymer beads are self-organized, non-reactive toluene-in-formamide emulsions are used. These non-aqueous emulsions should be stable at relatively high temperatures (~80 °C) for the evaporation process. We found that amphiphilic triblock copolymers of poly(ethylene oxide) (PEO) and poly(phenylene oxide) (PPO) with longer PEO chains (Pluronic® F108 (EO125-b-PO64-b-EO125) are required to stabilize those non-aqueous emulsions, and become more important at higher concentrations used for bulk fabrication. The carbon inside our C-MAC TiO2 significantly suppresses strong multiple scattering from structural defects or imperfections, thus emphasizing their Bragg reflection colors.
  1. Armstrong E, O’Dwyer C, J. Mater. Chem. C, 3, 6109 (2015)
  2. Dufresne ER, Noh H, Saranathan V, Mochrie SGJ, Cao H, Prum RO, Soft Matter, 5, 1792 (2009)
  3. Xiao M, Hu Z, Wang Z, Li Y, Tormo AD, Le Thomas N, Wang B, Gianneschi NC, Shawkey MD, Dhinojwala A, Sci. Adv., 3, e17011 (2017)
  4. Leung SF, Zhang Q, Xiu F, Yu D, Ho JC, Li D, Fan Z, J. Phys. Chem. Lett., 5, 1479 (2014)
  5. Fenzl C, Hirsch T, Wolfbeis OS, Angew. Chem.-Int. Edit., 53, 3318 (2014)
  6. Arsenault AC, Puzzo DP, Manners I, Ozin GA, Nature Photon., 1, 468 (2007)
  7. Zhang X, Wang F, Wang L, Lin Y, Zhy J, Dyes Pigment., 138, 182 (2017)
  8. Chokpanyarat T, Punsuvon V, Achiwawanich S, Adv. Mater. Sci. Eng., 2018, 1 (2018)
  9. Liu FF, Shan B, Zhang SF, Tang BT, Langmuir, 34(13), 3918 (2018)
  10. Zalfani M, van der Schueren B, Mandouani M, Bourguiga R, Yu WB, Wu M, Deparis O, Li Y, Su BL, Appl. Catal. B: Environ., 199, 187 (2016)
  11. Jiang Q, Wang L, Yan C, Guo Z, Wang N, Eng. Sci., 164, 2018
  12. Chen H, Lou R, Chen Y, Chen L, Lu J, Dong Q, Drug Deliv., 24, 775 (2017)
  13. Cheng C, Karuturi SK, Liu L, Liu J, Li H, Su LT, Tok AI, Fan HJ, Small, 8, 37 (2012)
  14. Yan X, Ye K, Zhang T, Xue C, Zhang D, Ma C, Wei J, Yang G, New J. Chem., 41, 8482 (2017)
  15. Zhao H, Deng W, Li Y, Adv. Com. Hybrid. Mater., 1, 404 (2018)
  16. Manoharan VN, Imhof A, Thorne JD, Pine DJ, Proc. SPIE, 44, 3937 (2000)
  17. Schwarz JP, Spackman JR, Fahey DW, Gao RS, Lohmann U, et al., J. Geophy. Res., 113, D03203 (2008)
  18. Takeoka Y, Yoshioka S, Takano A, Arai S, Nueangnoraj K, Nishihara H, Teshima M, Ohtsuka Y, Seki T, Angew. Chem.-Int. Edit., 52, 7261 (2013)
  19. Wang W, Tang B, Ma W, Zhang J, Ju B, Zhang S, J. Opt. Soc. Am. A., 32, 1109 (2015)
  20. Josephson DP, Miller M, Stein A, Z. Anorg. Allg. Chem., 640, 655 (2014)
  21. Klein SM, Manoharan VN, Pine DJ, Lange FF, Langmuir, 21(15), 6669 (2005)
  22. Imhof A, Pine DJ, J. Colloid Interface Sci., 192(2), 368 (1997)
  23. Bragg WH, Bragg WL, Proc. Royal Soc. A, 88, 428 (1913)
  24. Aguirre CI, Reguera E, Stein A, Adv. Funct. Mater., 20(16), 2565 (2010)
  25. Kim SH, Cho YS, Jeon SJ, Eun TH, Yi GR, Yang SM, Adv. Mater., 20(17), 3268 (2008)
  26. Veerappan G, Jung DW, Kwon J, Choi JM, Heo N, Yi GR, Park JH, Langmuir, 30(11), 3010 (2014)
  27. Kim YB, Tran-Phu T, Kim M, Jung DW, Yi GR, Park JH, ACS. Appl. Mater. Interfaces, 7, 4511 (2015)
  28. Koo HM, Tran-Phu T, Yi GR, Shin CH, Chung CH, Bae JW, Catal. Sci. Technol., 6, 4221 (2016)
  29. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J, Adv. Com. Hybrid. Mater., 1, 207 (2018)