화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.5, 607-624, October, 2018
SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형
SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures
E-mail:
초록
SAFT 상태 방정식이 기초하는 TPT이론과 통계역학적 원리를 개괄하고, 회합성 유체 혼합물의 기액 상평형을 예측하는 유용한 도구로 사용될 수 있음을 확인한다. PC-SAFT 상태 방정식의 이론적 구조를 상세히 검토하고, 비극성 혼합물, 극성 혼합물, 회합성 혼합물에 단계적으로 적용하는 과정을 통하여, 상태 방정식의 적용성과 성능을 평가한다. PCSAFT 상태 방정식은 기존의 공학용 상태 방정식과는 대조적으로, 경험적인 이성분 상호작용 매개변수의 사용 없이 다양한 혼합물들의 비이상적 거동을 정확하게 예측할 수 있다. 이는 SAFT 이론이 분자들 사이의 다양한 상호작용을 효과적으로 반영하는 분자 수준의 엄밀한 이론 체계에 기초하기 때문이며, 다성분 혼합물의 복잡한 열역학적인 현상에 대한 응용에서 실질적 이점을 제공한다.
We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.
  1. Sandler SI, Chemical, Biochemical and Engineering Thermodynamics 4th ed., John Wiley & Sons (2006).
  2. Soave G, Chem. Eng. Sci., 27, 1197 (1972)
  3. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
  4. Wertheim MS, J. Stat. Phys., 35, 19 (1984)
  5. Wertheim MS, J. Stat. Phys., 35, 35 (1984)
  6. Wertheim MS, J. Stat. Phys., 42, 459 (1986)
  7. Wertheim MS, J. Stat. Phys., 42, 477 (1986)
  8. Wertheim MS, J. Chem. Phys., 85, 2929 (1986)
  9. Wertheim MS, J. Chem. Phys., 87, 7323 (1987)
  10. Chapman WG, Jackson G, Gubbins KE, Mol. Phys., 65, 1057 (1988)
  11. Chang J, Sandler SI, Chem. Eng. Sci., 49(17), 2777 (1994)
  12. Ghonasgi D, Chapman WG, J. Chem. Phys., 100(9), 6633 (1994)
  13. Chang JE, Sandler SI, J. Chem. Phys., 102(1), 437 (1995)
  14. Chang J, Sandler SI, J. Chem. Phys., 103(8), 3196 (1995)
  15. Kalyuzhnyi YV, Cummings PT, J. Chem. Phys., 103(8), 3265 (1995)
  16. Chang J, Kim H, J. Chem. Phys., 109(6), 2579 (1998)
  17. Stell G, Lin CT, Kalyuzhnyi YV, J. Chem. Phys., 110(11), 5444 (1999)
  18. Stell G, Lin CT, Kalyuzhnyi YV, J. Chem. Phys., 110(11), 5458 (1999)
  19. Kalyuzhnyi YV, McCabe C, Whitebay E, Cummings PT, J. Chem. Phys., 121(16), 8128 (2004)
  20. Chang J, Korean J. Chem. Eng., 31(3), 374 (2014)
  21. Chapman WG, Gubbins KE, Jackson G, Radosz M, Fluid Phase Equilib., 52, 31 (1989)
  22. Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990)
  23. Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990)
  24. Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994 (1991)
  25. Gilvillegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN, J. Chem. Phys., 106(10), 4168 (1997)
  26. Blas FJ, Vega LF, Ind. Eng. Chem. Res., 37(2), 660 (1998)
  27. Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244 (2001)
  28. Gross J, Sadowski G, Ind. Eng. Chem. Res., 41(22), 5510 (2002)
  29. Yeom MS, Chang J, Kim H, Fluid Phase Equilib., 194, 579 (2002)
  30. Lafitte T, Apostolakou A, Avendano C, Galindo A, Adjiman CS, Muller EA, Jackson G, J. Chem. Phys., 139, 154504 (2013)
  31. Wei YS, Sadus RJ, AIChE J., 46(1), 169 (2000)
  32. Muller EA, Gubbins KE, Ind. Eng. Chem. Res., 40(10), 2193 (2001)
  33. Tan SP, Adidharma H, Radosz M, Ind. Eng. Chem. Res., 47(21), 8063 (2008)
  34. Chang J, Sandler SI, Mol. Phys., 81, 735 (1994)
  35. Carnahan NF, Starling KE, J. Chem. Phys., 51, 635 (1969)
  36. McQuarrie DA, Statistical Mechanics, Harper and Row, New York(1976).
  37. Boublik T, J. Chem. Phys., 53, 471 (1970)
  38. Mansoori GA, Carnahan NF, Starling KE, Leland TW, J. Chem. Phys., 54, 1523 (1971)
  39. Barker JA, Henderson D, J. Chem. Phys., 47, 2856 (1967)
  40. Chang J, Sandler SI, Mol. Phys., 81, 745 (1994)
  41. Gross J, Sadowski G, Fluid Phase Equilib., 168(2), 183 (2000)
  42. Lemmon EW, McLinden MO, Friend DG, Gaithersburg MD, 20899, http://webbook.nist.gov,(retrieved April 10, 2018).
  43. CHERIC Korea Thermophysical Properties Data Bank, https://www.cheric.org/research/kdb.
  44. Jog PK, Chapman WG, Mol. Phys., 97, 307 (1999)
  45. Rushbrooke GS, Stell G, Høye JS, Mol. Phys., 26, 1199 (1973)
  46. Jog PK, Sauer SG, Blaesing J, Chapman WG, Ind. Eng. Chem. Res., 40(21), 4641 (2001)
  47. Sauer SG, Chapman WG, Ind. Eng. Chem. Res., 42(22), 5687 (2003)
  48. Dominik A, Chapman WG, Kleiner M, Sadowski G, Ind. Eng. Chem. Res., 44(17), 6928 (2005)
  49. Gross J, Vrabec J, AIChE J., 52(3), 1194 (2006)
  50. Al-Saifi NM, Hamad EZ, Englezos P, Fluid Phase Equilib., 271(1-2), 82 (2008)
  51. Wolbach JP, Sandler SI, Ind. Eng. Chem. Res., 37(8), 2917 (1998)
  52. Kleiner M, Sadowski G, J. Phys. Chem. C, 111, 15544 (2007)
  53. Flory PJ, Principles of Polymer Chemistry, Cornell University Press(1953).