화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.5, 718-724, October, 2018
리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향
The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery
E-mail:
초록
본 연구에서는 농도구배형 공침합성법을 통해 Ni0.9Co0.05Ti0.05(OH)2 전구체를 제조하였다. 높은 니켈함량의 양극 활물질에서 나타나는 산소 탈리에 따른 구조변화문제를 극복하기 위하여 소성온도 변화에 따른 양극 활물질의 물리적, 전기화학적 분석방법을 사용하여 조사하였다. Li1.05Ni0.9Co0.05Ti0.05O2의 물리적 특성은 FE-SEM, XRD, TGA를 이용하여 분석하였다. 양극 활물질과 LiPF6(EC:EMC=1:2 vol%) 전해질을 사용하여 제조한 코인셀의 전기화학적 성능은 초기 충·방전 효율, 사이클 유지율 및 율속 테스트를 통해 분석하였다. 제조된 양극재의 초기 충전 용량 및 초기효율은 소성 온도 750~760 °C에서 244.5~247.9 mAh/g, 84.2~85.8%로 우수하였다. 또한 용량 보존율은 50사이클 후에 97.8~99.1% 의 높은 안정성을 나타내었다.
In this study, the Ni0.9Co0.05Ti0.05(OH)2 precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of Li1.05Ni0.9Co0.05Ti0.05O2 were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and LiPF6(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of 750~760 °C. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.
  1. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  2. Armand M, Tarascon JM, Nature, 451, 652 (2008)
  3. Pacala S, Socolow R, Science, 305, 968 (2004)
  4. Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320 (2018)
  5. Ohzuku T, Ueda A, Solid State Ion., 69(3-4), 201 (1994)
  6. Vu DL, Lee JW, Korean J. Chem. Eng., 33(2), 514 (2016)
  7. Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B, Nature, 392(6677), 694 (1998)
  8. Breger J, Jiang M, Dupre N, Meng YS, Shao-Horn Y, Ceder G, Grey CP, J. Solid State Chem., 178, 2575 (2005)
  9. Lee MH, Kang YJ, Myung ST, Sun YK, Electrochim. Acta, 50, 939 (948)
  10. Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K, Adv. Eng. Mater., 4, 130078 (2014)
  11. Xu J, Chen X, Wang C, Yang L, Gao X, Zhou Y, Xiao K, Xi X, Ceram. Int., 43, 11848 (2017)
  12. Sun YK, Noh HJ, Yoon CS, J. Electrochem. Soc., 159(1), A1 (2012)
  13. Cho TH, Park SM, Yoshio M, Hirai T, Hideshima Y, J. Power Sources, 142(1-2), 306 (2005)
  14. Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107 (2017)
  15. Patoux S, Doeff MM, Electrochem. Commun., 6, 767 (2004)
  16. Luo XF, Wang XY, Liao L, Wang XM, Gamboa S, Sebastian PJ, J. Power Sources, 161(1), 601 (2006)
  17. Reimers JN, Rossen E, Jones CD, Dahn JR, Solid State Ion., 61, 335 (1993)
  18. Dahn JR, Fuller EW, Obrovac M, Vonsacken U, Solid State Ion., 69(3-4), 265 (1994)
  19. Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK, J. Power Sources, 178(2), 826 (2008)
  20. Zheng J, Yan P, Estevez L, Wang C, Zhang JG, Nano Energy, 49, 538 (2018)
  21. Park TJ, Lim JB, Son JT, Bull. Korean Chem. Soc., 35, 357 (2014)