화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.5, 549-555, October, 2018
울트라 배터리 용 전해액 첨가제와 Nano-Pb/AC 음극의 전기화학적 특성
Electrochemical Characteristics of Electrolyte Additives and Nano-Pb/AC Anode for Ultra Batteries
E-mail:
초록
본 연구에서는 울트라 배터리의 전기화학적 성능을 향상시키기 위해서 Nano-Pb/Activated Carbon (Nano-Pb/AC) 복합 소재와 전해액 첨가제의 특성이 조사되었다. 제조된 복합 소재의 물리적 특성은 FE-SEM, TEM, XPS, BET를 이용하여 분석하였고, 울트라 배터리의 전기화학적 성능은 사이클, 율속, 임피던스 테스트를 통해 조사되었다. 납 산 배터리에 비하여 나노 납 함량이 9 wt%인 복합소재로 코팅된 울트라 배터리는 사이클 성능이 150%로 개선되었으며, 1-5 C 율속 테스트에서 방전 용량이 119-122%로 증가되었다. 또한 임피던스 테스트 결과 나노 납 함량이 증가할수록 내부 저항의 크기가 작아지는 것을 확인하였다. 전해액 첨가제가 0.45 vol% 포함된 배터리의 장기 사이클 성능은 140%로 향상되었다.
In this study, the electrochemical properties of nano-Pb/activated carbon (nano-Pb/AC) composites and electrolyte additives were examined to improve the performance of ultra batteries. Physical properties of the prepared nano-Pb/AC composites were analyzed using FE-SEM, TEM, XPS and BET. The electrochemical performances of ultra batteries were performed by cycle, rate performance and impedance tests. The cycling performance of nano-Pb/AC (Pb : 9 wt%) coated ultra battery increased by 150% with respect to the lead acid one, and the discharge specific capacity increased by 119-122% for 1-5 C rate tests. As a result of the impedance test, it was confirmed that the internal resistance decreased as the nano lead content increased. The cycle performance of the ultra battery containing 0.45 vol% electrolyte additives showed 140% longer than that of no electrolyte additives.
  1. Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
  2. Pavlov D, Rogachev T, Nikolov P, Petkova G, J. Power Sources, 191(1), 58 (2009)
  3. Chen HY, Li AJ, Finlow DE, J. Power Sources, 191(1), 22 (2009)
  4. Saravanan M, Ganesan M, Ambalavanan S, J. Power Sources, 251, 20 (2014)
  5. Baca P, Micka K, Krivik P, Tonar K, Toser P, J. Power Sources, 196(8), 3988 (2011)
  6. Zou XP, Kang ZX, Shu D, Liao YQ, Gong YB, He C, Hao JN, Zhong YY, Electrochim. Acta, 151, 89 (2015)
  7. Wang L, Zhang H, Zhang W, Cao G, Zhao H, Yang Y, Mater. Lett., 206, 113 (2017)
  8. Lian J, Li W, Wang F, Yan J, Wang K, Cheng S, Jiang K, J. Electrochem. Soc., 164, 1726 (2017)
  9. Hong B, Jiang L, Xue H, Liu F, Jia M, Li J, Liu Y, J. Power Sources, 270, 332 (0214)
  10. Wang Q, Liu JW, Yang DN, Yuan XQ, Li L, Zhu XF, Zhang W, Hu YC, Sun XJ, Liang S, Hu JP, Kumar RV, Yang JK, J. Power Sources, 285, 485 (2015)
  11. Perret P, Khani Z, Brousse T, Belanger D, Guay D, Electrochim. Acta, 56(24), 8122 (2011)
  12. Wang J, Zhang W, Yue X, Yang Q, Liu F, Wang Y, Zhang D, Li Z, Wang J, J. Mater. Chem. A, 4, 3893 (2016)
  13. Schuth F, Schmidt W, Adv. Mater., 14(9), 629 (2002)
  14. Lam LT, Louey R, Haigh NP, Lim OV, Vella DG, Phyland CG, Vu LH, Furukawa J, Takada T, Monma D, Kano T, J. Power Sources, 174(1), 16 (2007)
  15. Rahmanifar MS, Electrochim. Acta, 235, 10 (2017)
  16. Krivik P, J. Energy Storage, 15, 191 (2018)
  17. Long QY, Ma GZ, Xu QQ, Ma C, Nan JM, Li AJ, Chen HY, J. Power Sources, 343, 188 (2017)
  18. Liu Y, Gao PR, Bu XF, Kuang GZ, Liu W, Lei LX, J. Power Sources, 263, 1 (2014)
  19. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, Phys. Chem. Chem. Phys., 13, 17615 (2011)
  20. Ruetschi P, J. Power Sources, 127(1-2), 33 (2004)
  21. Hwang JU, Lee JD, Korean Chem. Eng. Res., 55(5), 593 (2017)