화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.5, 565-570, October, 2018
초음파 추출공정을 이용한 닥나무로부터 항산화성분의 추출공정 최적화
Statistical Optimization of Antioxidant Extraction from Broussonetia kazinoki Using Ultrasound-assisted Extraction
E-mail:
초록
본 연구에서는 초음파 용매추출공정을 이용하여 닥나무로부터 항산화성분을 추출하고, 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 중심합성계획모델의 반응치로는 추출수율과 DPPH 라디칼소거활성을 설정하고, 독립변수인 추출시간, 주정/초순수 부피비, 초음파 조사세기에 따른 주효과도와 교호효과도를 해석하였다. 추출수율과 DPPH 라디칼소거활성 모두 계량인자의 주효과도와 교호효과도를 모두 고려하였을 때 가장 큰 영향을 미치는 인자는 주정/초순수 부피비이었다. 반응표면분석법을 이용하여 추출공정의 최적화과정을 수행한 결과 최적추출조건은 추출시간 (19.92 min), 주정/초순수 부피비(54.23 vol%), 초음파 조사세기(557.65 W)로 나타났다. 이 조건으로부터 예상되는 반응치의 값은 추출수율(38.93 wt%), DPPH 라디칼소거활성(55.33%)으로 나타났다.
In this study, the antioxidant was extracted from Broussonetia kazinokii using ultrasound-assisted extraction (UAE) and optimized by using a response surface methodology. The response value of the central composite design model establishes the extraction yield and the DPPH radical scavenging activity. The extraction time and temperature and volume ratio of ethanol/ ultrapure water were selected as quantitative factors. When considering both the main and interaction effects, the factor having the greatest influence on the extraction yield and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was the volume ratio of ethanol/ultrapure water. The results of optimal extraction conditions were the extraction time (19.92 min), volume ratio of ethanol/ultrapure water (54.23%), and ultrasonic irradiation power (557.65 W). We could also obtained expected results of the yield = 38.93 wt% and DPPH radical scavenging activity = 55.33% under these conditions.
  1. Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH, Korean J. Food Sci. Technol., 44(5), 540 (2012)
  2. Hong IK, Park BR, Jeon GS, Lee SB, Appl. Chem. Eng., 27(3), 276 (2016)
  3. Ryu JH, Ahn H, Lee HJ, Broussonetia kaziniki, Fitoterapia, 74(4), 350 (2003)
  4. Kim AY, Lee CG, Lee DY, Li H, Jeon RO, Ryu JH, Kim SG, Free Radic. Biol. Med., 53(5), 1198 (2012)
  5. Yavari S, Malakahmad A, Sapari NB, Yavari S, Process Saf. Environ. Protect., 109, 509 (2017)
  6. D’Archivio AA, Maggi MA, Food Chem., 219, 414 (2017)
  7. Danmaliki GI, Saleh TA, Shamsuddeen AA, J. Ind. Eng. Chem., 313, 993 (2017)
  8. Ohale PE, Uzoh CF, Onukwuli OD, S. Afr. J. Chem. Eng., 24, 43 (2017)
  9. Verma P, Sharma MP, Fuel, 180, 164 (2016)
  10. Huang SM, Kuo CH, Chen CA, Liu YC, Shieh CJ, Ultrason. Sonochem., 36, 112 (2017)
  11. Lu Y, Foo LY, Food Chem., 68, 81 (2000)
  12. Hamlaoui I, Bencheraiet R, Bensegueni R, Bencharif M, J. Mol. Struct., 1156, 385 (2018)
  13. Zamani M, Delfani AM, Jabbari M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 201, 288 (2018)
  14. Park SA, Ha JH, Park SN, Appl. Chem. Eng., 24(2), 177 (2013)
  15. Blois MS, Nature, 181, 119 (1958)
  16. Lee HJ, Park JH, Jang DI, Ryu JH, Broussonetia kazinoki, Yakhak Hoeji, 41(4), 439 (1997)