Applied Chemistry for Engineering, Vol.29, No.5, 589-593, October, 2018
수소 생산 규모 300 m3 h-1급 글리세롤 수증기 개질반응에 대한 경제적 불확실성 분석
Economic Evaluation with Uncertainty Analysis of Glycerol Steam Reforming for the H2 Production Capacity of 300 m3 h-1
E-mail:,
초록
본 논문에서는 수소 생산 규모 300 m3 h-1급 글리세롤 수증기 개질반응에 대한 경제적 불확실성 분석을 Monte-Carlo 시뮬레이션 방법을 이용하여 수행하였다. 핵심 경제적 인자의 변동(± 10 - ± 40%)에 따른 수소 생산 단가의 변동을 확인하였으며, 기존 수소 생산 단가인 5.10 $ kgH2 -1를 얻기 위한 확률인 30.9%를 구하였다. 또한 설비투자비용(± 20%), 연간운영비용(± 20%), 수익(± 20%) 및 할인율의 변동(2-10%)에 따른 비용 편익비의 변동을 확인하였으며, 본 공정이 경제적 타당성이 있기 위해서는 비용 편익비의 값이 1 이상이여야 하며 이를 얻기 위한 확률 범위는 할인율의 변동에 따라 17-55%로 나타났다.
In this paper, an economic evaluation with the uncertainty analysis using a Monte-Carlo simulation method was performed for the glycerol steam reforming to produce H2 at a capacity of 300 m3 h-1. Fluctuations in a unit H2 production cost were identified based on the variation of key economic factors at ± 10 - ± 40% and the probability of 30.9% was obtained for a previously reported unit H2 production cost of 5.10 $ kgH2 -1. In addition, fluctuations in the B/C ratio were obtained by varying the fixed capital investment (± 20%), cost of manufacturing (± 20%), revenue (± 20%), and discount rate (2-10%) and the probability ranging from 17 to 55% was observed to meet a minimum B/C ratio of 1 for the economic feasibility of the glycerol steam reforming to produce H2.
- Sad ME, Duarte HA, Vignatti C, Padro CL, Apesteguia CR, Int. J. Hydrog. Energy, 40(18), 6097 (2015)
- Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi XT, Lim CJ, Ellis N, Grace JR, Fuel, 117, 1204 (2014)
- Vaidya PD, Rodrigues AE, Chem. Eng. Technol., 32(10), 1463 (2009)
- Lv XJ, Lin JH, Luo L, Zhang D, Lei SL, Xiao WJ, Xu Y, Gong YX, Liu ZH, Bioresour. Technol., 249, 226 (2018)
- Hejna A, Kosmela P, Formela K, Piszczyk L, Haponiuuk JT, Renew. Sust. Energ. Rev., 66, 449 (2016)
- Yus M, Soler J, Herguido J, Menendez M, Catal. Today, 299, 317 (2018)
- Veiga S, Faccio R, Segobia D, Apesteguia C, Bussi J, Int. J. Hydrog. Energy, 42(52), 30525 (2017)
- Pastor-Perez L, Sepulveda-Escribano A, Fuel, 194, 222 (2017)
- Voldsund M, Jordal K, Anantharaman R, Int. J. Hydrog. Energy, 41(9), 4969 (2016)
- Hajjaji N, Chahbani A, Khila Z, Pons MN, Energy, 64, 473 (2014)
- Buffoni IN, Gatti MN, Santori GF, Pompeo F, Nichio NN, Int. J. Hydrog. Energy, 42(18), 12967 (2017)
- Cormos AM, Cormos CC, Int. J. Hydrog. Energy, 42(12), 7798 (2017)
- Ou L, Li B, Dang Q, Jones S, Brown R, Wright MM, Energy Technol., 4, 441 (2016)
- Di Lorenzo G, Pilidis P, Witton J, Probert D, Appl. Energy, 98, 467 (2012)
- Lee B, Heo J, Choi NH, Moon C, Moon S, Lim H, Int. J. Hydrog. Energy, 42(39), 24612 (2017)
- Heo JH, Lim HK, Appl. Chem. Eng., 29(2), 209 (2018)
- Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, Analysis, Synthesis, and Design of Chemical Processes, 4th ed., Pearson Press, New Jersey, USA (2013).